ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoeq1 Unicode version

Theorem rmoeq1 2689
Description: Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmoeq1  |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem rmoeq1
StepHypRef Expression
1 nfcv 2332 . 2  |-  F/_ x A
2 nfcv 2332 . 2  |-  F/_ x B
31, 2rmoeq1f 2685 1  |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E*wrmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rmo 2476
This theorem is referenced by:  rmoeqd  2697
  Copyright terms: Public domain W3C validator