ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmoeq1 Unicode version

Theorem rmoeq1 2664
Description: Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmoeq1  |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem rmoeq1
StepHypRef Expression
1 nfcv 2308 . 2  |-  F/_ x A
2 nfcv 2308 . 2  |-  F/_ x B
31, 2rmoeq1f 2660 1  |-  ( A  =  B  ->  ( E* x  e.  A  ph  <->  E* x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   E*wrmo 2447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rmo 2452
This theorem is referenced by:  rmoeqd  2672
  Copyright terms: Public domain W3C validator