ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmov Unicode version

Theorem rmov 2780
Description: An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmov  |-  ( E* x  e.  _V  ph  <->  E* x ph )

Proof of Theorem rmov
StepHypRef Expression
1 df-rmo 2480 . 2  |-  ( E* x  e.  _V  ph  <->  E* x ( x  e. 
_V  /\  ph ) )
2 vex 2763 . . . 4  |-  x  e. 
_V
32biantrur 303 . . 3  |-  ( ph  <->  ( x  e.  _V  /\  ph ) )
43mobii 2079 . 2  |-  ( E* x ph  <->  E* x
( x  e.  _V  /\ 
ph ) )
51, 4bitr4i 187 1  |-  ( E* x  e.  _V  ph  <->  E* x ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E*wmo 2043    e. wcel 2164   E*wrmo 2475   _Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-rmo 2480  df-v 2762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator