ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmov Unicode version

Theorem rmov 2791
Description: An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmov  |-  ( E* x  e.  _V  ph  <->  E* x ph )

Proof of Theorem rmov
StepHypRef Expression
1 df-rmo 2491 . 2  |-  ( E* x  e.  _V  ph  <->  E* x ( x  e. 
_V  /\  ph ) )
2 vex 2774 . . . 4  |-  x  e. 
_V
32biantrur 303 . . 3  |-  ( ph  <->  ( x  e.  _V  /\  ph ) )
43mobii 2090 . 2  |-  ( E* x ph  <->  E* x
( x  e.  _V  /\ 
ph ) )
51, 4bitr4i 187 1  |-  ( E* x  e.  _V  ph  <->  E* x ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E*wmo 2054    e. wcel 2175   E*wrmo 2486   _Vcvv 2771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-rmo 2491  df-v 2773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator