ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabab Unicode version

Theorem rabab 2747
Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rabab  |-  { x  e.  _V  |  ph }  =  { x  |  ph }

Proof of Theorem rabab
StepHypRef Expression
1 df-rab 2453 . 2  |-  { x  e.  _V  |  ph }  =  { x  |  ( x  e.  _V  /\  ph ) }
2 vex 2729 . . . 4  |-  x  e. 
_V
32biantrur 301 . . 3  |-  ( ph  <->  ( x  e.  _V  /\  ph ) )
43abbii 2282 . 2  |-  { x  |  ph }  =  {
x  |  ( x  e.  _V  /\  ph ) }
51, 4eqtr4i 2189 1  |-  { x  e.  _V  |  ph }  =  { x  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343    e. wcel 2136   {cab 2151   {crab 2448   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-rab 2453  df-v 2728
This theorem is referenced by:  notab  3392  intmin2  3850  euen1  6768  bj-omind  13816
  Copyright terms: Public domain W3C validator