Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabab | Unicode version |
Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rabab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 2457 | . 2 | |
2 | vex 2733 | . . . 4 | |
3 | 2 | biantrur 301 | . . 3 |
4 | 3 | abbii 2286 | . 2 |
5 | 1, 4 | eqtr4i 2194 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1348 wcel 2141 cab 2156 crab 2452 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-rab 2457 df-v 2732 |
This theorem is referenced by: notab 3397 intmin2 3857 euen1 6780 bj-omind 13969 |
Copyright terms: Public domain | W3C validator |