ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabab Unicode version

Theorem rabab 2821
Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rabab  |-  { x  e.  _V  |  ph }  =  { x  |  ph }

Proof of Theorem rabab
StepHypRef Expression
1 df-rab 2517 . 2  |-  { x  e.  _V  |  ph }  =  { x  |  ( x  e.  _V  /\  ph ) }
2 vex 2802 . . . 4  |-  x  e. 
_V
32biantrur 303 . . 3  |-  ( ph  <->  ( x  e.  _V  /\  ph ) )
43abbii 2345 . 2  |-  { x  |  ph }  =  {
x  |  ( x  e.  _V  /\  ph ) }
51, 4eqtr4i 2253 1  |-  { x  e.  _V  |  ph }  =  { x  |  ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395    e. wcel 2200   {cab 2215   {crab 2512   _Vcvv 2799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-rab 2517  df-v 2801
This theorem is referenced by:  notab  3474  intmin2  3949  euen1  6954  bj-omind  16297
  Copyright terms: Public domain W3C validator