ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuv Unicode version

Theorem reuv 2796
Description: A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
Assertion
Ref Expression
reuv  |-  ( E! x  e.  _V  ph  <->  E! x ph )

Proof of Theorem reuv
StepHypRef Expression
1 df-reu 2493 . 2  |-  ( E! x  e.  _V  ph  <->  E! x ( x  e. 
_V  /\  ph ) )
2 vex 2779 . . . 4  |-  x  e. 
_V
32biantrur 303 . . 3  |-  ( ph  <->  ( x  e.  _V  /\  ph ) )
43eubii 2064 . 2  |-  ( E! x ph  <->  E! x
( x  e.  _V  /\ 
ph ) )
51, 4bitr4i 187 1  |-  ( E! x  e.  _V  ph  <->  E! x ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E!weu 2055    e. wcel 2178   E!wreu 2488   _Vcvv 2776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-clab 2194  df-cleq 2200  df-clel 2203  df-reu 2493  df-v 2778
This theorem is referenced by:  euen1  6917  updjud  7210
  Copyright terms: Public domain W3C validator