ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reuv Unicode version

Theorem reuv 2745
Description: A unique existential quantifier restricted to the universe is unrestricted. (Contributed by NM, 1-Nov-2010.)
Assertion
Ref Expression
reuv  |-  ( E! x  e.  _V  ph  <->  E! x ph )

Proof of Theorem reuv
StepHypRef Expression
1 df-reu 2451 . 2  |-  ( E! x  e.  _V  ph  <->  E! x ( x  e. 
_V  /\  ph ) )
2 vex 2729 . . . 4  |-  x  e. 
_V
32biantrur 301 . . 3  |-  ( ph  <->  ( x  e.  _V  /\  ph ) )
43eubii 2023 . 2  |-  ( E! x ph  <->  E! x
( x  e.  _V  /\ 
ph ) )
51, 4bitr4i 186 1  |-  ( E! x  e.  _V  ph  <->  E! x ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E!weu 2014    e. wcel 2136   E!wreu 2446   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-clab 2152  df-cleq 2158  df-clel 2161  df-reu 2451  df-v 2728
This theorem is referenced by:  euen1  6768  updjud  7047
  Copyright terms: Public domain W3C validator