| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrur | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| biantrur.1 |
|
| Ref | Expression |
|---|---|
| biantrur |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrur.1 |
. 2
| |
| 2 | ibar 301 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran 943 truan 1390 rexv 2790 reuv 2791 rmov 2792 rabab 2793 euxfrdc 2959 euind 2960 dfdif3 3283 ddifstab 3305 vss 3508 mptv 4142 regexmidlem1 4582 peano5 4647 intirr 5070 fvopab6 5678 riotav 5907 mpov 6037 brtpos0 6340 frec0g 6485 inl11 7169 apreim 8678 clim0 11629 gcd0id 12333 nnwosdc 12393 gsum0g 13261 isbasis3g 14551 opnssneib 14661 ssidcn 14715 bj-d0clsepcl 15898 |
| Copyright terms: Public domain | W3C validator |