ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biantrur Unicode version

Theorem biantrur 301
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.)
Hypothesis
Ref Expression
biantrur.1  |-  ph
Assertion
Ref Expression
biantrur  |-  ( ps  <->  (
ph  /\  ps )
)

Proof of Theorem biantrur
StepHypRef Expression
1 biantrur.1 . 2  |-  ph
2 ibar 299 . 2  |-  ( ph  ->  ( ps  <->  ( ph  /\ 
ps ) ) )
31, 2ax-mp 5 1  |-  ( ps  <->  (
ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  mpbiran  935  truan  1365  rexv  2748  reuv  2749  rmov  2750  rabab  2751  euxfrdc  2916  euind  2917  dfdif3  3237  ddifstab  3259  vss  3462  mptv  4086  regexmidlem1  4517  peano5  4582  intirr  4997  fvopab6  5592  riotav  5814  mpov  5943  brtpos0  6231  frec0g  6376  inl11  7042  apreim  8522  clim0  11248  gcd0id  11934  nnwosdc  11994  isbasis3g  12838  opnssneib  12950  ssidcn  13004  bj-d0clsepcl  13960
  Copyright terms: Public domain W3C validator