| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrur | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| biantrur.1 |
|
| Ref | Expression |
|---|---|
| biantrur |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrur.1 |
. 2
| |
| 2 | ibar 301 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran 946 truan 1412 rexv 2818 reuv 2819 rmov 2820 rabab 2821 euxfrdc 2989 euind 2990 dfdif3 3314 ddifstab 3336 vss 3539 mptv 4181 regexmidlem1 4625 peano5 4690 intirr 5115 fvopab6 5731 riotav 5960 mpov 6094 brtpos0 6398 frec0g 6543 inl11 7232 apreim 8750 ccatlcan 11250 clim0 11796 gcd0id 12500 nnwosdc 12560 gsum0g 13429 isbasis3g 14720 opnssneib 14830 ssidcn 14884 bj-d0clsepcl 16288 |
| Copyright terms: Public domain | W3C validator |