| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biantrur | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
| Ref | Expression |
|---|---|
| biantrur.1 |
|
| Ref | Expression |
|---|---|
| biantrur |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biantrur.1 |
. 2
| |
| 2 | ibar 301 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpbiran 943 truan 1390 rexv 2795 reuv 2796 rmov 2797 rabab 2798 euxfrdc 2966 euind 2967 dfdif3 3291 ddifstab 3313 vss 3516 mptv 4157 regexmidlem1 4599 peano5 4664 intirr 5088 fvopab6 5699 riotav 5928 mpov 6058 brtpos0 6361 frec0g 6506 inl11 7193 apreim 8711 ccatlcan 11209 clim0 11711 gcd0id 12415 nnwosdc 12475 gsum0g 13343 isbasis3g 14633 opnssneib 14743 ssidcn 14797 bj-d0clsepcl 16060 |
| Copyright terms: Public domain | W3C validator |