ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biantrur Unicode version

Theorem biantrur 303
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.)
Hypothesis
Ref Expression
biantrur.1  |-  ph
Assertion
Ref Expression
biantrur  |-  ( ps  <->  (
ph  /\  ps )
)

Proof of Theorem biantrur
StepHypRef Expression
1 biantrur.1 . 2  |-  ph
2 ibar 301 . 2  |-  ( ph  ->  ( ps  <->  ( ph  /\ 
ps ) ) )
31, 2ax-mp 5 1  |-  ( ps  <->  (
ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mpbiran  946  truan  1412  rexv  2818  reuv  2819  rmov  2820  rabab  2821  euxfrdc  2989  euind  2990  dfdif3  3314  ddifstab  3336  vss  3539  mptv  4181  regexmidlem1  4625  peano5  4690  intirr  5115  fvopab6  5731  riotav  5960  mpov  6094  brtpos0  6398  frec0g  6543  inl11  7232  apreim  8750  ccatlcan  11250  clim0  11796  gcd0id  12500  nnwosdc  12560  gsum0g  13429  isbasis3g  14720  opnssneib  14830  ssidcn  14884  bj-d0clsepcl  16288
  Copyright terms: Public domain W3C validator