ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  biantrur Unicode version

Theorem biantrur 303
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.)
Hypothesis
Ref Expression
biantrur.1  |-  ph
Assertion
Ref Expression
biantrur  |-  ( ps  <->  (
ph  /\  ps )
)

Proof of Theorem biantrur
StepHypRef Expression
1 biantrur.1 . 2  |-  ph
2 ibar 301 . 2  |-  ( ph  ->  ( ps  <->  ( ph  /\ 
ps ) ) )
31, 2ax-mp 5 1  |-  ( ps  <->  (
ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  mpbiran  942  truan  1381  rexv  2781  reuv  2782  rmov  2783  rabab  2784  euxfrdc  2950  euind  2951  dfdif3  3274  ddifstab  3296  vss  3499  mptv  4131  regexmidlem1  4570  peano5  4635  intirr  5057  fvopab6  5661  riotav  5886  mpov  6016  brtpos0  6319  frec0g  6464  inl11  7140  apreim  8647  clim0  11467  gcd0id  12171  nnwosdc  12231  gsum0g  13098  isbasis3g  14366  opnssneib  14476  ssidcn  14530  bj-d0clsepcl  15655
  Copyright terms: Public domain W3C validator