![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biantrur | Unicode version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
biantrur.1 |
![]() ![]() |
Ref | Expression |
---|---|
biantrur |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrur.1 |
. 2
![]() ![]() | |
2 | ibar 301 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpbiran 942 truan 1381 rexv 2778 reuv 2779 rmov 2780 rabab 2781 euxfrdc 2946 euind 2947 dfdif3 3269 ddifstab 3291 vss 3494 mptv 4126 regexmidlem1 4565 peano5 4630 intirr 5052 fvopab6 5654 riotav 5879 mpov 6008 brtpos0 6305 frec0g 6450 inl11 7124 apreim 8622 clim0 11428 gcd0id 12116 nnwosdc 12176 gsum0g 12979 isbasis3g 14214 opnssneib 14324 ssidcn 14378 bj-d0clsepcl 15417 |
Copyright terms: Public domain | W3C validator |