![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biantrur | Unicode version |
Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
biantrur.1 |
![]() ![]() |
Ref | Expression |
---|---|
biantrur |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biantrur.1 |
. 2
![]() ![]() | |
2 | ibar 301 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpbiran 942 truan 1381 rexv 2778 reuv 2779 rmov 2780 rabab 2781 euxfrdc 2947 euind 2948 dfdif3 3270 ddifstab 3292 vss 3495 mptv 4127 regexmidlem1 4566 peano5 4631 intirr 5053 fvopab6 5655 riotav 5880 mpov 6009 brtpos0 6307 frec0g 6452 inl11 7126 apreim 8624 clim0 11431 gcd0id 12119 nnwosdc 12179 gsum0g 12982 isbasis3g 14225 opnssneib 14335 ssidcn 14389 bj-d0clsepcl 15487 |
Copyright terms: Public domain | W3C validator |