| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > biantrur | Unicode version | ||
| Description: A wff is equivalent to its conjunction with truth. (Contributed by NM, 3-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| biantrur.1 | 
 | 
| Ref | Expression | 
|---|---|
| biantrur | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | biantrur.1 | 
. 2
 | |
| 2 | ibar 301 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: mpbiran 942 truan 1381 rexv 2781 reuv 2782 rmov 2783 rabab 2784 euxfrdc 2950 euind 2951 dfdif3 3273 ddifstab 3295 vss 3498 mptv 4130 regexmidlem1 4569 peano5 4634 intirr 5056 fvopab6 5658 riotav 5883 mpov 6012 brtpos0 6310 frec0g 6455 inl11 7131 apreim 8630 clim0 11450 gcd0id 12146 nnwosdc 12206 gsum0g 13039 isbasis3g 14282 opnssneib 14392 ssidcn 14446 bj-d0clsepcl 15571 | 
| Copyright terms: Public domain | W3C validator |