ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmov GIF version

Theorem rmov 2653
Description: An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmov (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑)

Proof of Theorem rmov
StepHypRef Expression
1 df-rmo 2378 . 2 (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 2636 . . . 4 𝑥 ∈ V
32biantrur 298 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43mobii 1992 . 2 (∃*𝑥𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4bitr4i 186 1 (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wcel 1445  ∃*wmo 1956  ∃*wrmo 2373  Vcvv 2633
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1388  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-rmo 2378  df-v 2635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator