ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmov GIF version

Theorem rmov 2750
Description: An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmov (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑)

Proof of Theorem rmov
StepHypRef Expression
1 df-rmo 2456 . 2 (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 2733 . . . 4 𝑥 ∈ V
32biantrur 301 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43mobii 2056 . 2 (∃*𝑥𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4bitr4i 186 1 (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  ∃*wmo 2020  wcel 2141  ∃*wrmo 2451  Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-rmo 2456  df-v 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator