ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmov GIF version

Theorem rmov 2755
Description: An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
rmov (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑)

Proof of Theorem rmov
StepHypRef Expression
1 df-rmo 2461 . 2 (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 2738 . . . 4 𝑥 ∈ V
32biantrur 303 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43mobii 2061 . 2 (∃*𝑥𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4bitr4i 187 1 (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  ∃*wmo 2025  wcel 2146  ∃*wrmo 2456  Vcvv 2735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-rmo 2461  df-v 2737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator