Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rmov | GIF version |
Description: An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
Ref | Expression |
---|---|
rmov | ⊢ (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 2456 | . 2 ⊢ (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑)) | |
2 | vex 2733 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 301 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | mobii 2056 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑)) |
5 | 1, 4 | bitr4i 186 | 1 ⊢ (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃*wmo 2020 ∈ wcel 2141 ∃*wrmo 2451 Vcvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-rmo 2456 df-v 2732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |