![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rmov | GIF version |
Description: An at-most-one quantifier restricted to the universe is unrestricted. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
Ref | Expression |
---|---|
rmov | ⊢ (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 2480 | . 2 ⊢ (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑)) | |
2 | vex 2763 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 303 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | mobii 2079 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃*𝑥(𝑥 ∈ V ∧ 𝜑)) |
5 | 1, 4 | bitr4i 187 | 1 ⊢ (∃*𝑥 ∈ V 𝜑 ↔ ∃*𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ↔ wb 105 ∃*wmo 2043 ∈ wcel 2164 ∃*wrmo 2475 Vcvv 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-rmo 2480 df-v 2762 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |