Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecopover | Unicode version |
Description: Assuming that operation is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ecopopr.1 | |
ecopopr.com | |
ecopopr.cl | |
ecopopr.ass | |
ecopopr.can |
Ref | Expression |
---|---|
ecopover |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecopopr.1 | . . . . 5 | |
2 | 1 | relopabi 4735 | . . . 4 |
3 | 2 | a1i 9 | . . 3 |
4 | ecopopr.com | . . . . 5 | |
5 | 1, 4 | ecopovsym 6605 | . . . 4 |
6 | 5 | adantl 275 | . . 3 |
7 | ecopopr.cl | . . . . 5 | |
8 | ecopopr.ass | . . . . 5 | |
9 | ecopopr.can | . . . . 5 | |
10 | 1, 4, 7, 8, 9 | ecopovtrn 6606 | . . . 4 |
11 | 10 | adantl 275 | . . 3 |
12 | vex 2733 | . . . . . . . . . . 11 | |
13 | vex 2733 | . . . . . . . . . . 11 | |
14 | 12, 13, 4 | caovcom 6007 | . . . . . . . . . 10 |
15 | 1 | ecopoveq 6604 | . . . . . . . . . 10 |
16 | 14, 15 | mpbiri 167 | . . . . . . . . 9 |
17 | 16 | anidms 395 | . . . . . . . 8 |
18 | 17 | rgen2a 2524 | . . . . . . 7 |
19 | breq12 3992 | . . . . . . . . 9 | |
20 | 19 | anidms 395 | . . . . . . . 8 |
21 | 20 | ralxp 4752 | . . . . . . 7 |
22 | 18, 21 | mpbir 145 | . . . . . 6 |
23 | 22 | rspec 2522 | . . . . 5 |
24 | 23 | a1i 9 | . . . 4 |
25 | opabssxp 4683 | . . . . . . 7 | |
26 | 1, 25 | eqsstri 3179 | . . . . . 6 |
27 | 26 | ssbri 4031 | . . . . 5 |
28 | brxp 4640 | . . . . . 6 | |
29 | 28 | simplbi 272 | . . . . 5 |
30 | 27, 29 | syl 14 | . . . 4 |
31 | 24, 30 | impbid1 141 | . . 3 |
32 | 3, 6, 11, 31 | iserd 6535 | . 2 |
33 | 32 | mptru 1357 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wtru 1349 wex 1485 wcel 2141 wral 2448 cop 3584 class class class wbr 3987 copab 4047 cxp 4607 wrel 4614 (class class class)co 5850 wer 6506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fv 5204 df-ov 5853 df-er 6509 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |