Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecopover | Unicode version |
Description: Assuming that operation is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is an equivalence relation. (Contributed by NM, 16-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
ecopopr.1 | |
ecopopr.com | |
ecopopr.cl | |
ecopopr.ass | |
ecopopr.can |
Ref | Expression |
---|---|
ecopover |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecopopr.1 | . . . . 5 | |
2 | 1 | relopabi 4737 | . . . 4 |
3 | 2 | a1i 9 | . . 3 |
4 | ecopopr.com | . . . . 5 | |
5 | 1, 4 | ecopovsym 6609 | . . . 4 |
6 | 5 | adantl 275 | . . 3 |
7 | ecopopr.cl | . . . . 5 | |
8 | ecopopr.ass | . . . . 5 | |
9 | ecopopr.can | . . . . 5 | |
10 | 1, 4, 7, 8, 9 | ecopovtrn 6610 | . . . 4 |
11 | 10 | adantl 275 | . . 3 |
12 | vex 2733 | . . . . . . . . . . 11 | |
13 | vex 2733 | . . . . . . . . . . 11 | |
14 | 12, 13, 4 | caovcom 6010 | . . . . . . . . . 10 |
15 | 1 | ecopoveq 6608 | . . . . . . . . . 10 |
16 | 14, 15 | mpbiri 167 | . . . . . . . . 9 |
17 | 16 | anidms 395 | . . . . . . . 8 |
18 | 17 | rgen2a 2524 | . . . . . . 7 |
19 | breq12 3994 | . . . . . . . . 9 | |
20 | 19 | anidms 395 | . . . . . . . 8 |
21 | 20 | ralxp 4754 | . . . . . . 7 |
22 | 18, 21 | mpbir 145 | . . . . . 6 |
23 | 22 | rspec 2522 | . . . . 5 |
24 | 23 | a1i 9 | . . . 4 |
25 | opabssxp 4685 | . . . . . . 7 | |
26 | 1, 25 | eqsstri 3179 | . . . . . 6 |
27 | 26 | ssbri 4033 | . . . . 5 |
28 | brxp 4642 | . . . . . 6 | |
29 | 28 | simplbi 272 | . . . . 5 |
30 | 27, 29 | syl 14 | . . . 4 |
31 | 24, 30 | impbid1 141 | . . 3 |
32 | 3, 6, 11, 31 | iserd 6539 | . 2 |
33 | 32 | mptru 1357 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wtru 1349 wex 1485 wcel 2141 wral 2448 cop 3586 class class class wbr 3989 copab 4049 cxp 4609 wrel 4616 (class class class)co 5853 wer 6510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fv 5206 df-ov 5856 df-er 6513 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |