ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoexw Unicode version

Theorem mpoexw 6266
Description: Weak version of mpoex 6267 that holds without ax-coll 4144. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Hypotheses
Ref Expression
mpoexw.1  |-  A  e. 
_V
mpoexw.2  |-  B  e. 
_V
mpoexw.3  |-  D  e. 
_V
mpoexw.4  |-  A. x  e.  A  A. y  e.  B  C  e.  D
Assertion
Ref Expression
mpoexw  |-  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V
Distinct variable groups:    x, y, A   
x, B, y    x, D, y
Allowed substitution hints:    C( x, y)

Proof of Theorem mpoexw
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqid 2193 . . 3  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  C )
21mpofun 6020 . 2  |-  Fun  (
x  e.  A , 
y  e.  B  |->  C )
3 mpoexw.4 . . . 4  |-  A. x  e.  A  A. y  e.  B  C  e.  D
41dmmpoga 6261 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  ->  dom  (
x  e.  A , 
y  e.  B  |->  C )  =  ( A  X.  B ) )
53, 4ax-mp 5 . . 3  |-  dom  (
x  e.  A , 
y  e.  B  |->  C )  =  ( A  X.  B )
6 mpoexw.1 . . . 4  |-  A  e. 
_V
7 mpoexw.2 . . . 4  |-  B  e. 
_V
86, 7xpex 4774 . . 3  |-  ( A  X.  B )  e. 
_V
95, 8eqeltri 2266 . 2  |-  dom  (
x  e.  A , 
y  e.  B  |->  C )  e.  _V
101rnmpo 6029 . . 3  |-  ran  (
x  e.  A , 
y  e.  B  |->  C )  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
11 mpoexw.3 . . . 4  |-  D  e. 
_V
123rspec 2546 . . . . . . . . 9  |-  ( x  e.  A  ->  A. y  e.  B  C  e.  D )
1312r19.21bi 2582 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  D )
14 eleq1a 2265 . . . . . . . 8  |-  ( C  e.  D  ->  (
z  =  C  -> 
z  e.  D ) )
1513, 14syl 14 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  =  C  ->  z  e.  D
) )
1615rexlimdva 2611 . . . . . 6  |-  ( x  e.  A  ->  ( E. y  e.  B  z  =  C  ->  z  e.  D ) )
1716rexlimiv 2605 . . . . 5  |-  ( E. x  e.  A  E. y  e.  B  z  =  C  ->  z  e.  D )
1817abssi 3254 . . . 4  |-  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }  C_  D
1911, 18ssexi 4167 . . 3  |-  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }  e.  _V
2010, 19eqeltri 2266 . 2  |-  ran  (
x  e.  A , 
y  e.  B  |->  C )  e.  _V
21 funexw 6164 . 2  |-  ( ( Fun  ( x  e.  A ,  y  e.  B  |->  C )  /\  dom  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V  /\ 
ran  ( x  e.  A ,  y  e.  B  |->  C )  e. 
_V )  ->  (
x  e.  A , 
y  e.  B  |->  C )  e.  _V )
222, 9, 20, 21mp3an 1348 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   _Vcvv 2760    X. cxp 4657   dom cdm 4659   ran crn 4660   Fun wfun 5248    e. cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator