Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpoexw | Unicode version |
Description: Weak version of mpoex 6182 that holds without ax-coll 4097. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
Ref | Expression |
---|---|
mpoexw.1 | |
mpoexw.2 | |
mpoexw.3 | |
mpoexw.4 |
Ref | Expression |
---|---|
mpoexw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2165 | . . 3 | |
2 | 1 | mpofun 5944 | . 2 |
3 | mpoexw.4 | . . . 4 | |
4 | 1 | dmmpoga 6176 | . . . 4 |
5 | 3, 4 | ax-mp 5 | . . 3 |
6 | mpoexw.1 | . . . 4 | |
7 | mpoexw.2 | . . . 4 | |
8 | 6, 7 | xpex 4719 | . . 3 |
9 | 5, 8 | eqeltri 2239 | . 2 |
10 | 1 | rnmpo 5952 | . . 3 |
11 | mpoexw.3 | . . . 4 | |
12 | 3 | rspec 2518 | . . . . . . . . 9 |
13 | 12 | r19.21bi 2554 | . . . . . . . 8 |
14 | eleq1a 2238 | . . . . . . . 8 | |
15 | 13, 14 | syl 14 | . . . . . . 7 |
16 | 15 | rexlimdva 2583 | . . . . . 6 |
17 | 16 | rexlimiv 2577 | . . . . 5 |
18 | 17 | abssi 3217 | . . . 4 |
19 | 11, 18 | ssexi 4120 | . . 3 |
20 | 10, 19 | eqeltri 2239 | . 2 |
21 | funexw 6080 | . 2 | |
22 | 2, 9, 20, 21 | mp3an 1327 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 cvv 2726 cxp 4602 cdm 4604 crn 4605 wfun 5182 cmpo 5844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |