| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpoexw | Unicode version | ||
| Description: Weak version of mpoex 6281 that holds without ax-coll 4149. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.) |
| Ref | Expression |
|---|---|
| mpoexw.1 |
|
| mpoexw.2 |
|
| mpoexw.3 |
|
| mpoexw.4 |
|
| Ref | Expression |
|---|---|
| mpoexw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 |
. . 3
| |
| 2 | 1 | mpofun 6028 |
. 2
|
| 3 | mpoexw.4 |
. . . 4
| |
| 4 | 1 | dmmpoga 6275 |
. . . 4
|
| 5 | 3, 4 | ax-mp 5 |
. . 3
|
| 6 | mpoexw.1 |
. . . 4
| |
| 7 | mpoexw.2 |
. . . 4
| |
| 8 | 6, 7 | xpex 4779 |
. . 3
|
| 9 | 5, 8 | eqeltri 2269 |
. 2
|
| 10 | 1 | rnmpo 6037 |
. . 3
|
| 11 | mpoexw.3 |
. . . 4
| |
| 12 | 3 | rspec 2549 |
. . . . . . . . 9
|
| 13 | 12 | r19.21bi 2585 |
. . . . . . . 8
|
| 14 | eleq1a 2268 |
. . . . . . . 8
| |
| 15 | 13, 14 | syl 14 |
. . . . . . 7
|
| 16 | 15 | rexlimdva 2614 |
. . . . . 6
|
| 17 | 16 | rexlimiv 2608 |
. . . . 5
|
| 18 | 17 | abssi 3259 |
. . . 4
|
| 19 | 11, 18 | ssexi 4172 |
. . 3
|
| 20 | 10, 19 | eqeltri 2269 |
. 2
|
| 21 | funexw 6178 |
. 2
| |
| 22 | 2, 9, 20, 21 | mp3an 1348 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 |
| This theorem is referenced by: prdsvallem 12974 |
| Copyright terms: Public domain | W3C validator |