ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpoexw Unicode version

Theorem mpoexw 6239
Description: Weak version of mpoex 6240 that holds without ax-coll 4133. If the domain and codomain of an operation given by maps-to notation are sets, the operation is a set. (Contributed by Rohan Ridenour, 14-Aug-2023.)
Hypotheses
Ref Expression
mpoexw.1  |-  A  e. 
_V
mpoexw.2  |-  B  e. 
_V
mpoexw.3  |-  D  e. 
_V
mpoexw.4  |-  A. x  e.  A  A. y  e.  B  C  e.  D
Assertion
Ref Expression
mpoexw  |-  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V
Distinct variable groups:    x, y, A   
x, B, y    x, D, y
Allowed substitution hints:    C( x, y)

Proof of Theorem mpoexw
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eqid 2189 . . 3  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  ( x  e.  A ,  y  e.  B  |->  C )
21mpofun 5999 . 2  |-  Fun  (
x  e.  A , 
y  e.  B  |->  C )
3 mpoexw.4 . . . 4  |-  A. x  e.  A  A. y  e.  B  C  e.  D
41dmmpoga 6234 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  C  e.  D  ->  dom  (
x  e.  A , 
y  e.  B  |->  C )  =  ( A  X.  B ) )
53, 4ax-mp 5 . . 3  |-  dom  (
x  e.  A , 
y  e.  B  |->  C )  =  ( A  X.  B )
6 mpoexw.1 . . . 4  |-  A  e. 
_V
7 mpoexw.2 . . . 4  |-  B  e. 
_V
86, 7xpex 4759 . . 3  |-  ( A  X.  B )  e. 
_V
95, 8eqeltri 2262 . 2  |-  dom  (
x  e.  A , 
y  e.  B  |->  C )  e.  _V
101rnmpo 6008 . . 3  |-  ran  (
x  e.  A , 
y  e.  B  |->  C )  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
11 mpoexw.3 . . . 4  |-  D  e. 
_V
123rspec 2542 . . . . . . . . 9  |-  ( x  e.  A  ->  A. y  e.  B  C  e.  D )
1312r19.21bi 2578 . . . . . . . 8  |-  ( ( x  e.  A  /\  y  e.  B )  ->  C  e.  D )
14 eleq1a 2261 . . . . . . . 8  |-  ( C  e.  D  ->  (
z  =  C  -> 
z  e.  D ) )
1513, 14syl 14 . . . . . . 7  |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( z  =  C  ->  z  e.  D
) )
1615rexlimdva 2607 . . . . . 6  |-  ( x  e.  A  ->  ( E. y  e.  B  z  =  C  ->  z  e.  D ) )
1716rexlimiv 2601 . . . . 5  |-  ( E. x  e.  A  E. y  e.  B  z  =  C  ->  z  e.  D )
1817abssi 3245 . . . 4  |-  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }  C_  D
1911, 18ssexi 4156 . . 3  |-  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }  e.  _V
2010, 19eqeltri 2262 . 2  |-  ran  (
x  e.  A , 
y  e.  B  |->  C )  e.  _V
21 funexw 6138 . 2  |-  ( ( Fun  ( x  e.  A ,  y  e.  B  |->  C )  /\  dom  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V  /\ 
ran  ( x  e.  A ,  y  e.  B  |->  C )  e. 
_V )  ->  (
x  e.  A , 
y  e.  B  |->  C )  e.  _V )
222, 9, 20, 21mp3an 1348 1  |-  ( x  e.  A ,  y  e.  B  |->  C )  e.  _V
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   {cab 2175   A.wral 2468   E.wrex 2469   _Vcvv 2752    X. cxp 4642   dom cdm 4644   ran crn 4645   Fun wfun 5229    e. cmpo 5899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator