| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecopoverg | Unicode version | ||
| Description: Assuming that operation
|
| Ref | Expression |
|---|---|
| ecopopr.1 |
|
| ecopoprg.com |
|
| ecopoprg.cl |
|
| ecopoprg.ass |
|
| ecopoprg.can |
|
| Ref | Expression |
|---|---|
| ecopoverg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 |
. . . . 5
| |
| 2 | 1 | relopabi 4803 |
. . . 4
|
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | ecopoprg.com |
. . . . 5
| |
| 5 | 1, 4 | ecopovsymg 6721 |
. . . 4
|
| 6 | 5 | adantl 277 |
. . 3
|
| 7 | ecopoprg.cl |
. . . . 5
| |
| 8 | ecopoprg.ass |
. . . . 5
| |
| 9 | ecopoprg.can |
. . . . 5
| |
| 10 | 1, 4, 7, 8, 9 | ecopovtrng 6722 |
. . . 4
|
| 11 | 10 | adantl 277 |
. . 3
|
| 12 | 4 | adantl 277 |
. . . . . . . . . . 11
|
| 13 | simpll 527 |
. . . . . . . . . . 11
| |
| 14 | simplr 528 |
. . . . . . . . . . 11
| |
| 15 | 12, 13, 14 | caovcomd 6103 |
. . . . . . . . . 10
|
| 16 | 1 | ecopoveq 6717 |
. . . . . . . . . 10
|
| 17 | 15, 16 | mpbird 167 |
. . . . . . . . 9
|
| 18 | 17 | anidms 397 |
. . . . . . . 8
|
| 19 | 18 | rgen2a 2560 |
. . . . . . 7
|
| 20 | breq12 4049 |
. . . . . . . . 9
| |
| 21 | 20 | anidms 397 |
. . . . . . . 8
|
| 22 | 21 | ralxp 4821 |
. . . . . . 7
|
| 23 | 19, 22 | mpbir 146 |
. . . . . 6
|
| 24 | 23 | rspec 2558 |
. . . . 5
|
| 25 | 24 | a1i 9 |
. . . 4
|
| 26 | opabssxp 4749 |
. . . . . . 7
| |
| 27 | 1, 26 | eqsstri 3225 |
. . . . . 6
|
| 28 | 27 | ssbri 4088 |
. . . . 5
|
| 29 | brxp 4706 |
. . . . . 6
| |
| 30 | 29 | simplbi 274 |
. . . . 5
|
| 31 | 28, 30 | syl 14 |
. . . 4
|
| 32 | 25, 31 | impbid1 142 |
. . 3
|
| 33 | 3, 6, 11, 32 | iserd 6646 |
. 2
|
| 34 | 33 | mptru 1382 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fv 5279 df-ov 5947 df-er 6620 |
| This theorem is referenced by: enqer 7471 enrer 7848 |
| Copyright terms: Public domain | W3C validator |