ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecopoverg Unicode version

Theorem ecopoverg 6746
Description: Assuming that operation  F is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation  .~, specified by the first hypothesis, is an equivalence relation. (Contributed by Jim Kingdon, 1-Sep-2019.)
Hypotheses
Ref Expression
ecopopr.1  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
ecopoprg.com  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
)  =  ( y 
.+  x ) )
ecopoprg.cl  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
)  e.  S )
ecopoprg.ass  |-  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  ->  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
ecopoprg.can  |-  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  ->  ( ( x  .+  y )  =  ( x  .+  z )  ->  y  =  z ) )
Assertion
Ref Expression
ecopoverg  |-  .~  Er  ( S  X.  S
)
Distinct variable groups:    x, y, z, w, v, u,  .+    x, S, y, z, w, v, u
Allowed substitution hints:    .~ ( x, y,
z, w, v, u)

Proof of Theorem ecopoverg
Dummy variables  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ecopopr.1 . . . . 5  |-  .~  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z 
.+  u )  =  ( w  .+  v
) ) ) }
21relopabi 4821 . . . 4  |-  Rel  .~
32a1i 9 . . 3  |-  ( T. 
->  Rel  .~  )
4 ecopoprg.com . . . . 5  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
)  =  ( y 
.+  x ) )
51, 4ecopovsymg 6744 . . . 4  |-  ( f  .~  g  ->  g  .~  f )
65adantl 277 . . 3  |-  ( ( T.  /\  f  .~  g )  ->  g  .~  f )
7 ecopoprg.cl . . . . 5  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x  .+  y
)  e.  S )
8 ecopoprg.ass . . . . 5  |-  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  ->  ( ( x  .+  y )  .+  z
)  =  ( x 
.+  ( y  .+  z ) ) )
9 ecopoprg.can . . . . 5  |-  ( ( x  e.  S  /\  y  e.  S  /\  z  e.  S )  ->  ( ( x  .+  y )  =  ( x  .+  z )  ->  y  =  z ) )
101, 4, 7, 8, 9ecopovtrng 6745 . . . 4  |-  ( ( f  .~  g  /\  g  .~  h )  -> 
f  .~  h )
1110adantl 277 . . 3  |-  ( ( T.  /\  ( f  .~  g  /\  g  .~  h ) )  -> 
f  .~  h )
124adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( g  e.  S  /\  h  e.  S )  /\  (
g  e.  S  /\  h  e.  S )
)  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  =  ( y 
.+  x ) )
13 simpll 527 . . . . . . . . . . 11  |-  ( ( ( g  e.  S  /\  h  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  -> 
g  e.  S )
14 simplr 528 . . . . . . . . . . 11  |-  ( ( ( g  e.  S  /\  h  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  ->  h  e.  S )
1512, 13, 14caovcomd 6126 . . . . . . . . . 10  |-  ( ( ( g  e.  S  /\  h  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  -> 
( g  .+  h
)  =  ( h 
.+  g ) )
161ecopoveq 6740 . . . . . . . . . 10  |-  ( ( ( g  e.  S  /\  h  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  -> 
( <. g ,  h >.  .~  <. g ,  h >.  <-> 
( g  .+  h
)  =  ( h 
.+  g ) ) )
1715, 16mpbird 167 . . . . . . . . 9  |-  ( ( ( g  e.  S  /\  h  e.  S
)  /\  ( g  e.  S  /\  h  e.  S ) )  ->  <. g ,  h >.  .~ 
<. g ,  h >. )
1817anidms 397 . . . . . . . 8  |-  ( ( g  e.  S  /\  h  e.  S )  -> 
<. g ,  h >.  .~ 
<. g ,  h >. )
1918rgen2a 2562 . . . . . . 7  |-  A. g  e.  S  A. h  e.  S  <. g ,  h >.  .~  <. g ,  h >.
20 breq12 4064 . . . . . . . . 9  |-  ( ( f  =  <. g ,  h >.  /\  f  =  <. g ,  h >. )  ->  ( f  .~  f  <->  <. g ,  h >.  .~  <. g ,  h >. ) )
2120anidms 397 . . . . . . . 8  |-  ( f  =  <. g ,  h >.  ->  ( f  .~  f 
<-> 
<. g ,  h >.  .~ 
<. g ,  h >. ) )
2221ralxp 4839 . . . . . . 7  |-  ( A. f  e.  ( S  X.  S ) f  .~  f 
<-> 
A. g  e.  S  A. h  e.  S  <. g ,  h >.  .~ 
<. g ,  h >. )
2319, 22mpbir 146 . . . . . 6  |-  A. f  e.  ( S  X.  S
) f  .~  f
2423rspec 2560 . . . . 5  |-  ( f  e.  ( S  X.  S )  ->  f  .~  f )
2524a1i 9 . . . 4  |-  ( T. 
->  ( f  e.  ( S  X.  S )  ->  f  .~  f
) )
26 opabssxp 4767 . . . . . . 7  |-  { <. x ,  y >.  |  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .+  u
)  =  ( w 
.+  v ) ) ) }  C_  (
( S  X.  S
)  X.  ( S  X.  S ) )
271, 26eqsstri 3233 . . . . . 6  |-  .~  C_  (
( S  X.  S
)  X.  ( S  X.  S ) )
2827ssbri 4104 . . . . 5  |-  ( f  .~  f  ->  f
( ( S  X.  S )  X.  ( S  X.  S ) ) f )
29 brxp 4724 . . . . . 6  |-  ( f ( ( S  X.  S )  X.  ( S  X.  S ) ) f  <->  ( f  e.  ( S  X.  S
)  /\  f  e.  ( S  X.  S
) ) )
3029simplbi 274 . . . . 5  |-  ( f ( ( S  X.  S )  X.  ( S  X.  S ) ) f  ->  f  e.  ( S  X.  S
) )
3128, 30syl 14 . . . 4  |-  ( f  .~  f  ->  f  e.  ( S  X.  S
) )
3225, 31impbid1 142 . . 3  |-  ( T. 
->  ( f  e.  ( S  X.  S )  <-> 
f  .~  f )
)
333, 6, 11, 32iserd 6669 . 2  |-  ( T. 
->  .~  Er  ( S  X.  S ) )
3433mptru 1382 1  |-  .~  Er  ( S  X.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   T. wtru 1374   E.wex 1516    e. wcel 2178   A.wral 2486   <.cop 3646   class class class wbr 4059   {copab 4120    X. cxp 4691   Rel wrel 4698  (class class class)co 5967    Er wer 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fv 5298  df-ov 5970  df-er 6643
This theorem is referenced by:  enqer  7506  enrer  7883
  Copyright terms: Public domain W3C validator