| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecopoverg | Unicode version | ||
| Description: Assuming that operation
|
| Ref | Expression |
|---|---|
| ecopopr.1 |
|
| ecopoprg.com |
|
| ecopoprg.cl |
|
| ecopoprg.ass |
|
| ecopoprg.can |
|
| Ref | Expression |
|---|---|
| ecopoverg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 |
. . . . 5
| |
| 2 | 1 | relopabi 4846 |
. . . 4
|
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | ecopoprg.com |
. . . . 5
| |
| 5 | 1, 4 | ecopovsymg 6779 |
. . . 4
|
| 6 | 5 | adantl 277 |
. . 3
|
| 7 | ecopoprg.cl |
. . . . 5
| |
| 8 | ecopoprg.ass |
. . . . 5
| |
| 9 | ecopoprg.can |
. . . . 5
| |
| 10 | 1, 4, 7, 8, 9 | ecopovtrng 6780 |
. . . 4
|
| 11 | 10 | adantl 277 |
. . 3
|
| 12 | 4 | adantl 277 |
. . . . . . . . . . 11
|
| 13 | simpll 527 |
. . . . . . . . . . 11
| |
| 14 | simplr 528 |
. . . . . . . . . . 11
| |
| 15 | 12, 13, 14 | caovcomd 6161 |
. . . . . . . . . 10
|
| 16 | 1 | ecopoveq 6775 |
. . . . . . . . . 10
|
| 17 | 15, 16 | mpbird 167 |
. . . . . . . . 9
|
| 18 | 17 | anidms 397 |
. . . . . . . 8
|
| 19 | 18 | rgen2a 2584 |
. . . . . . 7
|
| 20 | breq12 4087 |
. . . . . . . . 9
| |
| 21 | 20 | anidms 397 |
. . . . . . . 8
|
| 22 | 21 | ralxp 4864 |
. . . . . . 7
|
| 23 | 19, 22 | mpbir 146 |
. . . . . 6
|
| 24 | 23 | rspec 2582 |
. . . . 5
|
| 25 | 24 | a1i 9 |
. . . 4
|
| 26 | opabssxp 4792 |
. . . . . . 7
| |
| 27 | 1, 26 | eqsstri 3256 |
. . . . . 6
|
| 28 | 27 | ssbri 4127 |
. . . . 5
|
| 29 | brxp 4749 |
. . . . . 6
| |
| 30 | 29 | simplbi 274 |
. . . . 5
|
| 31 | 28, 30 | syl 14 |
. . . 4
|
| 32 | 25, 31 | impbid1 142 |
. . 3
|
| 33 | 3, 6, 11, 32 | iserd 6704 |
. 2
|
| 34 | 33 | mptru 1404 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fv 5325 df-ov 6003 df-er 6678 |
| This theorem is referenced by: enqer 7541 enrer 7918 |
| Copyright terms: Public domain | W3C validator |