| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecopoverg | Unicode version | ||
| Description: Assuming that operation
|
| Ref | Expression |
|---|---|
| ecopopr.1 |
|
| ecopoprg.com |
|
| ecopoprg.cl |
|
| ecopoprg.ass |
|
| ecopoprg.can |
|
| Ref | Expression |
|---|---|
| ecopoverg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecopopr.1 |
. . . . 5
| |
| 2 | 1 | relopabi 4791 |
. . . 4
|
| 3 | 2 | a1i 9 |
. . 3
|
| 4 | ecopoprg.com |
. . . . 5
| |
| 5 | 1, 4 | ecopovsymg 6693 |
. . . 4
|
| 6 | 5 | adantl 277 |
. . 3
|
| 7 | ecopoprg.cl |
. . . . 5
| |
| 8 | ecopoprg.ass |
. . . . 5
| |
| 9 | ecopoprg.can |
. . . . 5
| |
| 10 | 1, 4, 7, 8, 9 | ecopovtrng 6694 |
. . . 4
|
| 11 | 10 | adantl 277 |
. . 3
|
| 12 | 4 | adantl 277 |
. . . . . . . . . . 11
|
| 13 | simpll 527 |
. . . . . . . . . . 11
| |
| 14 | simplr 528 |
. . . . . . . . . . 11
| |
| 15 | 12, 13, 14 | caovcomd 6080 |
. . . . . . . . . 10
|
| 16 | 1 | ecopoveq 6689 |
. . . . . . . . . 10
|
| 17 | 15, 16 | mpbird 167 |
. . . . . . . . 9
|
| 18 | 17 | anidms 397 |
. . . . . . . 8
|
| 19 | 18 | rgen2a 2551 |
. . . . . . 7
|
| 20 | breq12 4038 |
. . . . . . . . 9
| |
| 21 | 20 | anidms 397 |
. . . . . . . 8
|
| 22 | 21 | ralxp 4809 |
. . . . . . 7
|
| 23 | 19, 22 | mpbir 146 |
. . . . . 6
|
| 24 | 23 | rspec 2549 |
. . . . 5
|
| 25 | 24 | a1i 9 |
. . . 4
|
| 26 | opabssxp 4737 |
. . . . . . 7
| |
| 27 | 1, 26 | eqsstri 3215 |
. . . . . 6
|
| 28 | 27 | ssbri 4077 |
. . . . 5
|
| 29 | brxp 4694 |
. . . . . 6
| |
| 30 | 29 | simplbi 274 |
. . . . 5
|
| 31 | 28, 30 | syl 14 |
. . . 4
|
| 32 | 25, 31 | impbid1 142 |
. . 3
|
| 33 | 3, 6, 11, 32 | iserd 6618 |
. 2
|
| 34 | 33 | mptru 1373 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fv 5266 df-ov 5925 df-er 6592 |
| This theorem is referenced by: enqer 7425 enrer 7802 |
| Copyright terms: Public domain | W3C validator |