Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecopoverg | Unicode version |
Description: Assuming that operation is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is an equivalence relation. (Contributed by Jim Kingdon, 1-Sep-2019.) |
Ref | Expression |
---|---|
ecopopr.1 | |
ecopoprg.com | |
ecopoprg.cl | |
ecopoprg.ass | |
ecopoprg.can |
Ref | Expression |
---|---|
ecopoverg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecopopr.1 | . . . . 5 | |
2 | 1 | relopabi 4730 | . . . 4 |
3 | 2 | a1i 9 | . . 3 |
4 | ecopoprg.com | . . . . 5 | |
5 | 1, 4 | ecopovsymg 6600 | . . . 4 |
6 | 5 | adantl 275 | . . 3 |
7 | ecopoprg.cl | . . . . 5 | |
8 | ecopoprg.ass | . . . . 5 | |
9 | ecopoprg.can | . . . . 5 | |
10 | 1, 4, 7, 8, 9 | ecopovtrng 6601 | . . . 4 |
11 | 10 | adantl 275 | . . 3 |
12 | 4 | adantl 275 | . . . . . . . . . . 11 |
13 | simpll 519 | . . . . . . . . . . 11 | |
14 | simplr 520 | . . . . . . . . . . 11 | |
15 | 12, 13, 14 | caovcomd 5998 | . . . . . . . . . 10 |
16 | 1 | ecopoveq 6596 | . . . . . . . . . 10 |
17 | 15, 16 | mpbird 166 | . . . . . . . . 9 |
18 | 17 | anidms 395 | . . . . . . . 8 |
19 | 18 | rgen2a 2520 | . . . . . . 7 |
20 | breq12 3987 | . . . . . . . . 9 | |
21 | 20 | anidms 395 | . . . . . . . 8 |
22 | 21 | ralxp 4747 | . . . . . . 7 |
23 | 19, 22 | mpbir 145 | . . . . . 6 |
24 | 23 | rspec 2518 | . . . . 5 |
25 | 24 | a1i 9 | . . . 4 |
26 | opabssxp 4678 | . . . . . . 7 | |
27 | 1, 26 | eqsstri 3174 | . . . . . 6 |
28 | 27 | ssbri 4026 | . . . . 5 |
29 | brxp 4635 | . . . . . 6 | |
30 | 29 | simplbi 272 | . . . . 5 |
31 | 28, 30 | syl 14 | . . . 4 |
32 | 25, 31 | impbid1 141 | . . 3 |
33 | 3, 6, 11, 32 | iserd 6527 | . 2 |
34 | 33 | mptru 1352 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wtru 1344 wex 1480 wcel 2136 wral 2444 cop 3579 class class class wbr 3982 copab 4042 cxp 4602 wrel 4609 (class class class)co 5842 wer 6498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fv 5196 df-ov 5845 df-er 6501 |
This theorem is referenced by: enqer 7299 enrer 7676 |
Copyright terms: Public domain | W3C validator |