ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclri Unicode version

Theorem vtoclri 2839
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.)
Hypotheses
Ref Expression
vtoclri.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclri.2  |-  A. x  e.  B  ph
Assertion
Ref Expression
vtoclri  |-  ( A  e.  B  ->  ps )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem vtoclri
StepHypRef Expression
1 vtoclri.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
2 vtoclri.2 . . 3  |-  A. x  e.  B  ph
32rspec 2549 . 2  |-  ( x  e.  B  ->  ph )
41, 3vtoclga 2830 1  |-  ( A  e.  B  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765
This theorem is referenced by:  ordpwsucexmid  4606  bj-nn0suc0  15596
  Copyright terms: Public domain W3C validator