ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclri Unicode version

Theorem vtoclri 2805
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 21-Nov-1994.)
Hypotheses
Ref Expression
vtoclri.1  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtoclri.2  |-  A. x  e.  B  ph
Assertion
Ref Expression
vtoclri  |-  ( A  e.  B  ->  ps )
Distinct variable groups:    x, A    x, B    ps, x
Allowed substitution hint:    ph( x)

Proof of Theorem vtoclri
StepHypRef Expression
1 vtoclri.1 . 2  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
2 vtoclri.2 . . 3  |-  A. x  e.  B  ph
32rspec 2522 . 2  |-  ( x  e.  B  ->  ph )
41, 3vtoclga 2796 1  |-  ( A  e.  B  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732
This theorem is referenced by:  ordpwsucexmid  4554  bj-nn0suc0  13985
  Copyright terms: Public domain W3C validator