ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  indstr Unicode version

Theorem indstr 9413
Description: Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.)
Hypotheses
Ref Expression
indstr.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
indstr.2  |-  ( x  e.  NN  ->  ( A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )
)
Assertion
Ref Expression
indstr  |-  ( x  e.  NN  ->  ph )
Distinct variable groups:    x, y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem indstr
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 3939 . . . . 5  |-  ( z  =  1  ->  (
y  <  z  <->  y  <  1 ) )
21imbi1d 230 . . . 4  |-  ( z  =  1  ->  (
( y  <  z  ->  ps )  <->  ( y  <  1  ->  ps )
) )
32ralbidv 2438 . . 3  |-  ( z  =  1  ->  ( A. y  e.  NN  ( y  <  z  ->  ps )  <->  A. y  e.  NN  ( y  <  1  ->  ps )
) )
4 breq2 3939 . . . . 5  |-  ( z  =  w  ->  (
y  <  z  <->  y  <  w ) )
54imbi1d 230 . . . 4  |-  ( z  =  w  ->  (
( y  <  z  ->  ps )  <->  ( y  <  w  ->  ps )
) )
65ralbidv 2438 . . 3  |-  ( z  =  w  ->  ( A. y  e.  NN  ( y  <  z  ->  ps )  <->  A. y  e.  NN  ( y  < 
w  ->  ps )
) )
7 breq2 3939 . . . . 5  |-  ( z  =  ( w  + 
1 )  ->  (
y  <  z  <->  y  <  ( w  +  1 ) ) )
87imbi1d 230 . . . 4  |-  ( z  =  ( w  + 
1 )  ->  (
( y  <  z  ->  ps )  <->  ( y  <  ( w  +  1 )  ->  ps )
) )
98ralbidv 2438 . . 3  |-  ( z  =  ( w  + 
1 )  ->  ( A. y  e.  NN  ( y  <  z  ->  ps )  <->  A. y  e.  NN  ( y  < 
( w  +  1 )  ->  ps )
) )
10 breq2 3939 . . . . 5  |-  ( z  =  x  ->  (
y  <  z  <->  y  <  x ) )
1110imbi1d 230 . . . 4  |-  ( z  =  x  ->  (
( y  <  z  ->  ps )  <->  ( y  <  x  ->  ps )
) )
1211ralbidv 2438 . . 3  |-  ( z  =  x  ->  ( A. y  e.  NN  ( y  <  z  ->  ps )  <->  A. y  e.  NN  ( y  < 
x  ->  ps )
) )
13 nnnlt1 8768 . . . . 5  |-  ( y  e.  NN  ->  -.  y  <  1 )
1413pm2.21d 609 . . . 4  |-  ( y  e.  NN  ->  (
y  <  1  ->  ps ) )
1514rgen 2488 . . 3  |-  A. y  e.  NN  ( y  <  1  ->  ps )
16 1nn 8753 . . . . 5  |-  1  e.  NN
17 elex2 2705 . . . . 5  |-  ( 1  e.  NN  ->  E. u  u  e.  NN )
18 nfra1 2469 . . . . . 6  |-  F/ y A. y  e.  NN  ( y  <  w  ->  ps )
1918r19.3rm 3454 . . . . 5  |-  ( E. u  u  e.  NN  ->  ( A. y  e.  NN  ( y  < 
w  ->  ps )  <->  A. y  e.  NN  A. y  e.  NN  (
y  <  w  ->  ps ) ) )
2016, 17, 19mp2b 8 . . . 4  |-  ( A. y  e.  NN  (
y  <  w  ->  ps )  <->  A. y  e.  NN  A. y  e.  NN  (
y  <  w  ->  ps ) )
21 rsp 2483 . . . . . . . . . 10  |-  ( A. y  e.  NN  (
y  <  w  ->  ps )  ->  ( y  e.  NN  ->  ( y  <  w  ->  ps )
) )
2221com12 30 . . . . . . . . 9  |-  ( y  e.  NN  ->  ( A. y  e.  NN  ( y  <  w  ->  ps )  ->  (
y  <  w  ->  ps ) ) )
2322adantl 275 . . . . . . . 8  |-  ( ( w  e.  NN  /\  y  e.  NN )  ->  ( A. y  e.  NN  ( y  < 
w  ->  ps )  ->  ( y  <  w  ->  ps ) ) )
24 indstr.2 . . . . . . . . . . . . 13  |-  ( x  e.  NN  ->  ( A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )
)
2524rgen 2488 . . . . . . . . . . . 12  |-  A. x  e.  NN  ( A. y  e.  NN  ( y  < 
x  ->  ps )  ->  ph )
26 nfv 1509 . . . . . . . . . . . . 13  |-  F/ w
( A. y  e.  NN  ( y  < 
x  ->  ps )  ->  ph )
27 nfv 1509 . . . . . . . . . . . . . 14  |-  F/ x A. y  e.  NN  ( y  <  w  ->  ps )
28 nfsbc1v 2930 . . . . . . . . . . . . . 14  |-  F/ x [. w  /  x ]. ph
2927, 28nfim 1552 . . . . . . . . . . . . 13  |-  F/ x
( A. y  e.  NN  ( y  < 
w  ->  ps )  ->  [. w  /  x ]. ph )
30 breq2 3939 . . . . . . . . . . . . . . . 16  |-  ( x  =  w  ->  (
y  <  x  <->  y  <  w ) )
3130imbi1d 230 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  (
( y  <  x  ->  ps )  <->  ( y  <  w  ->  ps )
) )
3231ralbidv 2438 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  ( A. y  e.  NN  ( y  <  x  ->  ps )  <->  A. y  e.  NN  ( y  < 
w  ->  ps )
) )
33 sbceq1a 2921 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  ( ph 
<-> 
[. w  /  x ]. ph ) )
3432, 33imbi12d 233 . . . . . . . . . . . . 13  |-  ( x  =  w  ->  (
( A. y  e.  NN  ( y  < 
x  ->  ps )  ->  ph )  <->  ( A. y  e.  NN  (
y  <  w  ->  ps )  ->  [. w  /  x ]. ph ) ) )
3526, 29, 34cbvral 2653 . . . . . . . . . . . 12  |-  ( A. x  e.  NN  ( A. y  e.  NN  ( y  <  x  ->  ps )  ->  ph )  <->  A. w  e.  NN  ( A. y  e.  NN  ( y  <  w  ->  ps )  ->  [. w  /  x ]. ph )
)
3625, 35mpbi 144 . . . . . . . . . . 11  |-  A. w  e.  NN  ( A. y  e.  NN  ( y  < 
w  ->  ps )  ->  [. w  /  x ]. ph )
3736rspec 2487 . . . . . . . . . 10  |-  ( w  e.  NN  ->  ( A. y  e.  NN  ( y  <  w  ->  ps )  ->  [. w  /  x ]. ph )
)
38 vex 2692 . . . . . . . . . . . . 13  |-  y  e. 
_V
39 indstr.1 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
4038, 39sbcie 2946 . . . . . . . . . . . 12  |-  ( [. y  /  x ]. ph  <->  ps )
41 dfsbcq 2914 . . . . . . . . . . . 12  |-  ( y  =  w  ->  ( [. y  /  x ]. ph  <->  [. w  /  x ]. ph ) )
4240, 41bitr3id 193 . . . . . . . . . . 11  |-  ( y  =  w  ->  ( ps 
<-> 
[. w  /  x ]. ph ) )
4342biimprcd 159 . . . . . . . . . 10  |-  ( [. w  /  x ]. ph  ->  ( y  =  w  ->  ps ) )
4437, 43syl6 33 . . . . . . . . 9  |-  ( w  e.  NN  ->  ( A. y  e.  NN  ( y  <  w  ->  ps )  ->  (
y  =  w  ->  ps ) ) )
4544adantr 274 . . . . . . . 8  |-  ( ( w  e.  NN  /\  y  e.  NN )  ->  ( A. y  e.  NN  ( y  < 
w  ->  ps )  ->  ( y  =  w  ->  ps ) ) )
4623, 45jcad 305 . . . . . . 7  |-  ( ( w  e.  NN  /\  y  e.  NN )  ->  ( A. y  e.  NN  ( y  < 
w  ->  ps )  ->  ( ( y  < 
w  ->  ps )  /\  ( y  =  w  ->  ps ) ) ) )
47 jaob 700 . . . . . . 7  |-  ( ( ( y  <  w  \/  y  =  w
)  ->  ps )  <->  ( ( y  <  w  ->  ps )  /\  (
y  =  w  ->  ps ) ) )
4846, 47syl6ibr 161 . . . . . 6  |-  ( ( w  e.  NN  /\  y  e.  NN )  ->  ( A. y  e.  NN  ( y  < 
w  ->  ps )  ->  ( ( y  < 
w  \/  y  =  w )  ->  ps ) ) )
49 nnleltp1 9135 . . . . . . . . 9  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( y  <_  w  <->  y  <  ( w  + 
1 ) ) )
50 nnz 9095 . . . . . . . . . 10  |-  ( y  e.  NN  ->  y  e.  ZZ )
51 nnz 9095 . . . . . . . . . 10  |-  ( w  e.  NN  ->  w  e.  ZZ )
52 zleloe 9123 . . . . . . . . . 10  |-  ( ( y  e.  ZZ  /\  w  e.  ZZ )  ->  ( y  <_  w  <->  ( y  <  w  \/  y  =  w ) ) )
5350, 51, 52syl2an 287 . . . . . . . . 9  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( y  <_  w  <->  ( y  <  w  \/  y  =  w ) ) )
5449, 53bitr3d 189 . . . . . . . 8  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( y  <  (
w  +  1 )  <-> 
( y  <  w  \/  y  =  w
) ) )
5554ancoms 266 . . . . . . 7  |-  ( ( w  e.  NN  /\  y  e.  NN )  ->  ( y  <  (
w  +  1 )  <-> 
( y  <  w  \/  y  =  w
) ) )
5655imbi1d 230 . . . . . 6  |-  ( ( w  e.  NN  /\  y  e.  NN )  ->  ( ( y  < 
( w  +  1 )  ->  ps )  <->  ( ( y  <  w  \/  y  =  w
)  ->  ps )
) )
5748, 56sylibrd 168 . . . . 5  |-  ( ( w  e.  NN  /\  y  e.  NN )  ->  ( A. y  e.  NN  ( y  < 
w  ->  ps )  ->  ( y  <  (
w  +  1 )  ->  ps ) ) )
5857ralimdva 2502 . . . 4  |-  ( w  e.  NN  ->  ( A. y  e.  NN  A. y  e.  NN  (
y  <  w  ->  ps )  ->  A. y  e.  NN  ( y  < 
( w  +  1 )  ->  ps )
) )
5920, 58syl5bi 151 . . 3  |-  ( w  e.  NN  ->  ( A. y  e.  NN  ( y  <  w  ->  ps )  ->  A. y  e.  NN  ( y  < 
( w  +  1 )  ->  ps )
) )
603, 6, 9, 12, 15, 59nnind 8758 . 2  |-  ( x  e.  NN  ->  A. y  e.  NN  ( y  < 
x  ->  ps )
)
6160, 24mpd 13 1  |-  ( x  e.  NN  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1332   E.wex 1469    e. wcel 1481   A.wral 2417   [.wsbc 2912   class class class wbr 3935  (class class class)co 5780   1c1 7643    + caddc 7645    < clt 7822    <_ cle 7823   NNcn 8742   ZZcz 9076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4052  ax-pow 4104  ax-pr 4137  ax-un 4361  ax-setind 4458  ax-cnex 7733  ax-resscn 7734  ax-1cn 7735  ax-1re 7736  ax-icn 7737  ax-addcl 7738  ax-addrcl 7739  ax-mulcl 7740  ax-addcom 7742  ax-addass 7744  ax-distr 7746  ax-i2m1 7747  ax-0lt1 7748  ax-0id 7750  ax-rnegex 7751  ax-cnre 7753  ax-pre-ltirr 7754  ax-pre-ltwlin 7755  ax-pre-lttrn 7756  ax-pre-ltadd 7758
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3076  df-un 3078  df-in 3080  df-ss 3087  df-pw 3515  df-sn 3536  df-pr 3537  df-op 3539  df-uni 3743  df-int 3778  df-br 3936  df-opab 3996  df-id 4221  df-xp 4551  df-rel 4552  df-cnv 4553  df-co 4554  df-dm 4555  df-iota 5094  df-fun 5131  df-fv 5137  df-riota 5736  df-ov 5783  df-oprab 5784  df-mpo 5785  df-pnf 7824  df-mnf 7825  df-xr 7826  df-ltxr 7827  df-le 7828  df-sub 7957  df-neg 7958  df-inn 8743  df-n0 9000  df-z 9077
This theorem is referenced by:  indstr2  9428
  Copyright terms: Public domain W3C validator