| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > indstr | Unicode version | ||
| Description: Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.) | 
| Ref | Expression | 
|---|---|
| indstr.1 | 
 | 
| indstr.2 | 
 | 
| Ref | Expression | 
|---|---|
| indstr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq2 4037 | 
. . . . 5
 | |
| 2 | 1 | imbi1d 231 | 
. . . 4
 | 
| 3 | 2 | ralbidv 2497 | 
. . 3
 | 
| 4 | breq2 4037 | 
. . . . 5
 | |
| 5 | 4 | imbi1d 231 | 
. . . 4
 | 
| 6 | 5 | ralbidv 2497 | 
. . 3
 | 
| 7 | breq2 4037 | 
. . . . 5
 | |
| 8 | 7 | imbi1d 231 | 
. . . 4
 | 
| 9 | 8 | ralbidv 2497 | 
. . 3
 | 
| 10 | breq2 4037 | 
. . . . 5
 | |
| 11 | 10 | imbi1d 231 | 
. . . 4
 | 
| 12 | 11 | ralbidv 2497 | 
. . 3
 | 
| 13 | nnnlt1 9016 | 
. . . . 5
 | |
| 14 | 13 | pm2.21d 620 | 
. . . 4
 | 
| 15 | 14 | rgen 2550 | 
. . 3
 | 
| 16 | 1nn 9001 | 
. . . . 5
 | |
| 17 | elex2 2779 | 
. . . . 5
 | |
| 18 | nfra1 2528 | 
. . . . . 6
 | |
| 19 | 18 | r19.3rm 3539 | 
. . . . 5
 | 
| 20 | 16, 17, 19 | mp2b 8 | 
. . . 4
 | 
| 21 | rsp 2544 | 
. . . . . . . . . 10
 | |
| 22 | 21 | com12 30 | 
. . . . . . . . 9
 | 
| 23 | 22 | adantl 277 | 
. . . . . . . 8
 | 
| 24 | indstr.2 | 
. . . . . . . . . . . . 13
 | |
| 25 | 24 | rgen 2550 | 
. . . . . . . . . . . 12
 | 
| 26 | nfv 1542 | 
. . . . . . . . . . . . 13
 | |
| 27 | nfv 1542 | 
. . . . . . . . . . . . . 14
 | |
| 28 | nfsbc1v 3008 | 
. . . . . . . . . . . . . 14
 | |
| 29 | 27, 28 | nfim 1586 | 
. . . . . . . . . . . . 13
 | 
| 30 | breq2 4037 | 
. . . . . . . . . . . . . . . 16
 | |
| 31 | 30 | imbi1d 231 | 
. . . . . . . . . . . . . . 15
 | 
| 32 | 31 | ralbidv 2497 | 
. . . . . . . . . . . . . 14
 | 
| 33 | sbceq1a 2999 | 
. . . . . . . . . . . . . 14
 | |
| 34 | 32, 33 | imbi12d 234 | 
. . . . . . . . . . . . 13
 | 
| 35 | 26, 29, 34 | cbvral 2725 | 
. . . . . . . . . . . 12
 | 
| 36 | 25, 35 | mpbi 145 | 
. . . . . . . . . . 11
 | 
| 37 | 36 | rspec 2549 | 
. . . . . . . . . 10
 | 
| 38 | vex 2766 | 
. . . . . . . . . . . . 13
 | |
| 39 | indstr.1 | 
. . . . . . . . . . . . 13
 | |
| 40 | 38, 39 | sbcie 3024 | 
. . . . . . . . . . . 12
 | 
| 41 | dfsbcq 2991 | 
. . . . . . . . . . . 12
 | |
| 42 | 40, 41 | bitr3id 194 | 
. . . . . . . . . . 11
 | 
| 43 | 42 | biimprcd 160 | 
. . . . . . . . . 10
 | 
| 44 | 37, 43 | syl6 33 | 
. . . . . . . . 9
 | 
| 45 | 44 | adantr 276 | 
. . . . . . . 8
 | 
| 46 | 23, 45 | jcad 307 | 
. . . . . . 7
 | 
| 47 | jaob 711 | 
. . . . . . 7
 | |
| 48 | 46, 47 | imbitrrdi 162 | 
. . . . . 6
 | 
| 49 | nnleltp1 9385 | 
. . . . . . . . 9
 | |
| 50 | nnz 9345 | 
. . . . . . . . . 10
 | |
| 51 | nnz 9345 | 
. . . . . . . . . 10
 | |
| 52 | zleloe 9373 | 
. . . . . . . . . 10
 | |
| 53 | 50, 51, 52 | syl2an 289 | 
. . . . . . . . 9
 | 
| 54 | 49, 53 | bitr3d 190 | 
. . . . . . . 8
 | 
| 55 | 54 | ancoms 268 | 
. . . . . . 7
 | 
| 56 | 55 | imbi1d 231 | 
. . . . . 6
 | 
| 57 | 48, 56 | sylibrd 169 | 
. . . . 5
 | 
| 58 | 57 | ralimdva 2564 | 
. . . 4
 | 
| 59 | 20, 58 | biimtrid 152 | 
. . 3
 | 
| 60 | 3, 6, 9, 12, 15, 59 | nnind 9006 | 
. 2
 | 
| 61 | 60, 24 | mpd 13 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 | 
| This theorem is referenced by: indstr2 9683 | 
| Copyright terms: Public domain | W3C validator |