| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > indstr | Unicode version | ||
| Description: Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.) |
| Ref | Expression |
|---|---|
| indstr.1 |
|
| indstr.2 |
|
| Ref | Expression |
|---|---|
| indstr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4086 |
. . . . 5
| |
| 2 | 1 | imbi1d 231 |
. . . 4
|
| 3 | 2 | ralbidv 2530 |
. . 3
|
| 4 | breq2 4086 |
. . . . 5
| |
| 5 | 4 | imbi1d 231 |
. . . 4
|
| 6 | 5 | ralbidv 2530 |
. . 3
|
| 7 | breq2 4086 |
. . . . 5
| |
| 8 | 7 | imbi1d 231 |
. . . 4
|
| 9 | 8 | ralbidv 2530 |
. . 3
|
| 10 | breq2 4086 |
. . . . 5
| |
| 11 | 10 | imbi1d 231 |
. . . 4
|
| 12 | 11 | ralbidv 2530 |
. . 3
|
| 13 | nnnlt1 9132 |
. . . . 5
| |
| 14 | 13 | pm2.21d 622 |
. . . 4
|
| 15 | 14 | rgen 2583 |
. . 3
|
| 16 | 1nn 9117 |
. . . . 5
| |
| 17 | elex2 2816 |
. . . . 5
| |
| 18 | nfra1 2561 |
. . . . . 6
| |
| 19 | 18 | r19.3rm 3580 |
. . . . 5
|
| 20 | 16, 17, 19 | mp2b 8 |
. . . 4
|
| 21 | rsp 2577 |
. . . . . . . . . 10
| |
| 22 | 21 | com12 30 |
. . . . . . . . 9
|
| 23 | 22 | adantl 277 |
. . . . . . . 8
|
| 24 | indstr.2 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | rgen 2583 |
. . . . . . . . . . . 12
|
| 26 | nfv 1574 |
. . . . . . . . . . . . 13
| |
| 27 | nfv 1574 |
. . . . . . . . . . . . . 14
| |
| 28 | nfsbc1v 3047 |
. . . . . . . . . . . . . 14
| |
| 29 | 27, 28 | nfim 1618 |
. . . . . . . . . . . . 13
|
| 30 | breq2 4086 |
. . . . . . . . . . . . . . . 16
| |
| 31 | 30 | imbi1d 231 |
. . . . . . . . . . . . . . 15
|
| 32 | 31 | ralbidv 2530 |
. . . . . . . . . . . . . 14
|
| 33 | sbceq1a 3038 |
. . . . . . . . . . . . . 14
| |
| 34 | 32, 33 | imbi12d 234 |
. . . . . . . . . . . . 13
|
| 35 | 26, 29, 34 | cbvral 2761 |
. . . . . . . . . . . 12
|
| 36 | 25, 35 | mpbi 145 |
. . . . . . . . . . 11
|
| 37 | 36 | rspec 2582 |
. . . . . . . . . 10
|
| 38 | vex 2802 |
. . . . . . . . . . . . 13
| |
| 39 | indstr.1 |
. . . . . . . . . . . . 13
| |
| 40 | 38, 39 | sbcie 3063 |
. . . . . . . . . . . 12
|
| 41 | dfsbcq 3030 |
. . . . . . . . . . . 12
| |
| 42 | 40, 41 | bitr3id 194 |
. . . . . . . . . . 11
|
| 43 | 42 | biimprcd 160 |
. . . . . . . . . 10
|
| 44 | 37, 43 | syl6 33 |
. . . . . . . . 9
|
| 45 | 44 | adantr 276 |
. . . . . . . 8
|
| 46 | 23, 45 | jcad 307 |
. . . . . . 7
|
| 47 | jaob 715 |
. . . . . . 7
| |
| 48 | 46, 47 | imbitrrdi 162 |
. . . . . 6
|
| 49 | nnleltp1 9502 |
. . . . . . . . 9
| |
| 50 | nnz 9461 |
. . . . . . . . . 10
| |
| 51 | nnz 9461 |
. . . . . . . . . 10
| |
| 52 | zleloe 9489 |
. . . . . . . . . 10
| |
| 53 | 50, 51, 52 | syl2an 289 |
. . . . . . . . 9
|
| 54 | 49, 53 | bitr3d 190 |
. . . . . . . 8
|
| 55 | 54 | ancoms 268 |
. . . . . . 7
|
| 56 | 55 | imbi1d 231 |
. . . . . 6
|
| 57 | 48, 56 | sylibrd 169 |
. . . . 5
|
| 58 | 57 | ralimdva 2597 |
. . . 4
|
| 59 | 20, 58 | biimtrid 152 |
. . 3
|
| 60 | 3, 6, 9, 12, 15, 59 | nnind 9122 |
. 2
|
| 61 | 60, 24 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 |
| This theorem is referenced by: indstr2 9800 |
| Copyright terms: Public domain | W3C validator |