| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > indstr | Unicode version | ||
| Description: Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001.) |
| Ref | Expression |
|---|---|
| indstr.1 |
|
| indstr.2 |
|
| Ref | Expression |
|---|---|
| indstr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4055 |
. . . . 5
| |
| 2 | 1 | imbi1d 231 |
. . . 4
|
| 3 | 2 | ralbidv 2507 |
. . 3
|
| 4 | breq2 4055 |
. . . . 5
| |
| 5 | 4 | imbi1d 231 |
. . . 4
|
| 6 | 5 | ralbidv 2507 |
. . 3
|
| 7 | breq2 4055 |
. . . . 5
| |
| 8 | 7 | imbi1d 231 |
. . . 4
|
| 9 | 8 | ralbidv 2507 |
. . 3
|
| 10 | breq2 4055 |
. . . . 5
| |
| 11 | 10 | imbi1d 231 |
. . . 4
|
| 12 | 11 | ralbidv 2507 |
. . 3
|
| 13 | nnnlt1 9082 |
. . . . 5
| |
| 14 | 13 | pm2.21d 620 |
. . . 4
|
| 15 | 14 | rgen 2560 |
. . 3
|
| 16 | 1nn 9067 |
. . . . 5
| |
| 17 | elex2 2790 |
. . . . 5
| |
| 18 | nfra1 2538 |
. . . . . 6
| |
| 19 | 18 | r19.3rm 3553 |
. . . . 5
|
| 20 | 16, 17, 19 | mp2b 8 |
. . . 4
|
| 21 | rsp 2554 |
. . . . . . . . . 10
| |
| 22 | 21 | com12 30 |
. . . . . . . . 9
|
| 23 | 22 | adantl 277 |
. . . . . . . 8
|
| 24 | indstr.2 |
. . . . . . . . . . . . 13
| |
| 25 | 24 | rgen 2560 |
. . . . . . . . . . . 12
|
| 26 | nfv 1552 |
. . . . . . . . . . . . 13
| |
| 27 | nfv 1552 |
. . . . . . . . . . . . . 14
| |
| 28 | nfsbc1v 3021 |
. . . . . . . . . . . . . 14
| |
| 29 | 27, 28 | nfim 1596 |
. . . . . . . . . . . . 13
|
| 30 | breq2 4055 |
. . . . . . . . . . . . . . . 16
| |
| 31 | 30 | imbi1d 231 |
. . . . . . . . . . . . . . 15
|
| 32 | 31 | ralbidv 2507 |
. . . . . . . . . . . . . 14
|
| 33 | sbceq1a 3012 |
. . . . . . . . . . . . . 14
| |
| 34 | 32, 33 | imbi12d 234 |
. . . . . . . . . . . . 13
|
| 35 | 26, 29, 34 | cbvral 2735 |
. . . . . . . . . . . 12
|
| 36 | 25, 35 | mpbi 145 |
. . . . . . . . . . 11
|
| 37 | 36 | rspec 2559 |
. . . . . . . . . 10
|
| 38 | vex 2776 |
. . . . . . . . . . . . 13
| |
| 39 | indstr.1 |
. . . . . . . . . . . . 13
| |
| 40 | 38, 39 | sbcie 3037 |
. . . . . . . . . . . 12
|
| 41 | dfsbcq 3004 |
. . . . . . . . . . . 12
| |
| 42 | 40, 41 | bitr3id 194 |
. . . . . . . . . . 11
|
| 43 | 42 | biimprcd 160 |
. . . . . . . . . 10
|
| 44 | 37, 43 | syl6 33 |
. . . . . . . . 9
|
| 45 | 44 | adantr 276 |
. . . . . . . 8
|
| 46 | 23, 45 | jcad 307 |
. . . . . . 7
|
| 47 | jaob 712 |
. . . . . . 7
| |
| 48 | 46, 47 | imbitrrdi 162 |
. . . . . 6
|
| 49 | nnleltp1 9452 |
. . . . . . . . 9
| |
| 50 | nnz 9411 |
. . . . . . . . . 10
| |
| 51 | nnz 9411 |
. . . . . . . . . 10
| |
| 52 | zleloe 9439 |
. . . . . . . . . 10
| |
| 53 | 50, 51, 52 | syl2an 289 |
. . . . . . . . 9
|
| 54 | 49, 53 | bitr3d 190 |
. . . . . . . 8
|
| 55 | 54 | ancoms 268 |
. . . . . . 7
|
| 56 | 55 | imbi1d 231 |
. . . . . 6
|
| 57 | 48, 56 | sylibrd 169 |
. . . . 5
|
| 58 | 57 | ralimdva 2574 |
. . . 4
|
| 59 | 20, 58 | biimtrid 152 |
. . 3
|
| 60 | 3, 6, 9, 12, 15, 59 | nnind 9072 |
. 2
|
| 61 | 60, 24 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 |
| This theorem is referenced by: indstr2 9750 |
| Copyright terms: Public domain | W3C validator |