Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rgen | Unicode version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
rgen.1 |
Ref | Expression |
---|---|
rgen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2440 | . 2 | |
2 | rgen.1 | . 2 | |
3 | 1, 2 | mpgbir 1433 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 wral 2435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1429 |
This theorem depends on definitions: df-bi 116 df-ral 2440 |
This theorem is referenced by: rgen2a 2511 rgenw 2512 mprg 2514 mprgbir 2515 rgen2 2543 r19.21be 2548 nrex 2549 rexlimi 2567 sbcth2 3024 reuss 3388 ral0 3495 unimax 3806 mpteq1 4048 mpteq2ia 4050 ordon 4444 tfis 4541 finds 4558 finds2 4559 ordom 4565 omsinds 4580 dmxpid 4806 fnopab 5293 fmpti 5618 opabex3 6067 oawordriexmid 6414 fifo 6921 inresflem 6998 0ct 7045 infnninf 7061 infnninfOLD 7062 exmidonfinlem 7122 pw1on 7155 indpi 7256 nnindnn 7807 sup3exmid 8822 nnssre 8831 nnind 8843 nnsub 8866 dfuzi 9268 indstr 9498 cnref1o 9552 frec2uzsucd 10293 uzsinds 10334 ser0f 10407 bccl 10634 rexuz3 10883 isumlessdc 11386 prodf1f 11433 iprodap0 11472 eff2 11570 reeff1 11590 prmind2 11988 3prm 11996 sqrt2irr 12027 phisum 12103 isbasis3g 12415 distop 12456 cdivcncfap 12958 dveflem 13058 ioocosf1o 13146 2irrexpqap 13266 bj-indint 13477 bj-nnelirr 13499 bj-omord 13506 012of 13538 2o01f 13539 0nninf 13547 nconstwlpolem0 13604 |
Copyright terms: Public domain | W3C validator |