| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen | Unicode version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| rgen.1 |
|
| Ref | Expression |
|---|---|
| rgen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2489 |
. 2
| |
| 2 | rgen.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1476 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 df-ral 2489 |
| This theorem is referenced by: rgen2a 2560 rgenw 2561 mprg 2563 mprgbir 2564 rgen2 2592 r19.21be 2597 nrex 2598 rexlimi 2616 sbcth2 3086 reuss 3454 ral0 3562 unimax 3884 mpteq1 4128 mpteq2ia 4130 ordon 4534 tfis 4631 finds 4648 finds2 4649 ordom 4655 omsinds 4670 dmxpid 4899 fnopab 5400 fmpti 5732 opabex3 6207 oawordriexmid 6556 fifo 7082 inresflem 7162 0ct 7209 infnninf 7226 infnninfOLD 7227 exmidonfinlem 7301 pw1on 7338 netap 7366 2omotaplemap 7369 indpi 7455 nnindnn 8006 aptap 8723 sup3exmid 9030 nnssre 9040 nnind 9052 nnsub 9075 dfuzi 9483 indstr 9714 cnref1o 9772 frec2uzsucd 10546 uzsinds 10589 ser0f 10679 bccl 10912 rexuz3 11301 isumlessdc 11807 prodf1f 11854 iprodap0 11893 eff2 11991 reeff1 12011 prmind2 12442 3prm 12450 sqrt2irr 12484 phisum 12563 pockthi 12681 1arith 12690 1arith2 12691 prminf 12826 xpsff1o 13181 rngmgpf 13699 mgpf 13773 cnfld1 14334 cnsubglem 14341 isbasis3g 14518 distop 14557 cdivcncfap 15076 dveflem 15198 ioocosf1o 15326 2irrexpqap 15450 2sqlem6 15597 2sqlem10 15602 bj-indint 15867 bj-nnelirr 15889 bj-omord 15896 012of 15930 2o01f 15931 0nninf 15941 nconstwlpolem0 16002 |
| Copyright terms: Public domain | W3C validator |