| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen | Unicode version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| rgen.1 |
|
| Ref | Expression |
|---|---|
| rgen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2489 |
. 2
| |
| 2 | rgen.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1476 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 |
| This theorem depends on definitions: df-bi 117 df-ral 2489 |
| This theorem is referenced by: rgen2a 2560 rgenw 2561 mprg 2563 mprgbir 2564 rgen2 2592 r19.21be 2597 nrex 2598 rexlimi 2616 sbcth2 3086 reuss 3454 ral0 3562 unimax 3884 mpteq1 4129 mpteq2ia 4131 ordon 4535 tfis 4632 finds 4649 finds2 4650 ordom 4656 omsinds 4671 dmxpid 4900 fnopab 5402 fmpti 5734 opabex3 6209 oawordriexmid 6558 fifo 7084 inresflem 7164 0ct 7211 infnninf 7228 infnninfOLD 7229 exmidonfinlem 7303 pw1on 7340 netap 7368 2omotaplemap 7371 indpi 7457 nnindnn 8008 aptap 8725 sup3exmid 9032 nnssre 9042 nnind 9054 nnsub 9077 dfuzi 9485 indstr 9716 cnref1o 9774 frec2uzsucd 10548 uzsinds 10591 ser0f 10681 bccl 10914 rexuz3 11334 isumlessdc 11840 prodf1f 11887 iprodap0 11926 eff2 12024 reeff1 12044 prmind2 12475 3prm 12483 sqrt2irr 12517 phisum 12596 pockthi 12714 1arith 12723 1arith2 12724 prminf 12859 xpsff1o 13214 rngmgpf 13732 mgpf 13806 cnfld1 14367 cnsubglem 14374 isbasis3g 14551 distop 14590 cdivcncfap 15109 dveflem 15231 ioocosf1o 15359 2irrexpqap 15483 2sqlem6 15630 2sqlem10 15635 bj-indint 15904 bj-nnelirr 15926 bj-omord 15933 012of 15967 2o01f 15968 0nninf 15978 nconstwlpolem0 16039 |
| Copyright terms: Public domain | W3C validator |