| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen | Unicode version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| rgen.1 |
|
| Ref | Expression |
|---|---|
| rgen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2480 |
. 2
| |
| 2 | rgen.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1467 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 |
| This theorem is referenced by: rgen2a 2551 rgenw 2552 mprg 2554 mprgbir 2555 rgen2 2583 r19.21be 2588 nrex 2589 rexlimi 2607 sbcth2 3077 reuss 3445 ral0 3553 unimax 3874 mpteq1 4118 mpteq2ia 4120 ordon 4523 tfis 4620 finds 4637 finds2 4638 ordom 4644 omsinds 4659 dmxpid 4888 fnopab 5383 fmpti 5715 opabex3 6180 oawordriexmid 6529 fifo 7047 inresflem 7127 0ct 7174 infnninf 7191 infnninfOLD 7192 exmidonfinlem 7262 pw1on 7295 netap 7323 2omotaplemap 7326 indpi 7411 nnindnn 7962 aptap 8679 sup3exmid 8986 nnssre 8996 nnind 9008 nnsub 9031 dfuzi 9438 indstr 9669 cnref1o 9727 frec2uzsucd 10495 uzsinds 10538 ser0f 10628 bccl 10861 rexuz3 11157 isumlessdc 11663 prodf1f 11710 iprodap0 11749 eff2 11847 reeff1 11867 prmind2 12298 3prm 12306 sqrt2irr 12340 phisum 12419 pockthi 12537 1arith 12546 1arith2 12547 prminf 12682 xpsff1o 13002 rngmgpf 13503 mgpf 13577 cnfld1 14138 cnsubglem 14145 isbasis3g 14292 distop 14331 cdivcncfap 14850 dveflem 14972 ioocosf1o 15100 2irrexpqap 15224 2sqlem6 15371 2sqlem10 15376 bj-indint 15587 bj-nnelirr 15609 bj-omord 15616 012of 15650 2o01f 15651 0nninf 15658 nconstwlpolem0 15717 |
| Copyright terms: Public domain | W3C validator |