| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rgen | Unicode version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) | 
| Ref | Expression | 
|---|---|
| rgen.1 | 
 | 
| Ref | Expression | 
|---|---|
| rgen | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ral 2480 | 
. 2
 | |
| 2 | rgen.1 | 
. 2
 | |
| 3 | 1, 2 | mpgbir 1467 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 df-ral 2480 | 
| This theorem is referenced by: rgen2a 2551 rgenw 2552 mprg 2554 mprgbir 2555 rgen2 2583 r19.21be 2588 nrex 2589 rexlimi 2607 sbcth2 3077 reuss 3444 ral0 3552 unimax 3873 mpteq1 4117 mpteq2ia 4119 ordon 4522 tfis 4619 finds 4636 finds2 4637 ordom 4643 omsinds 4658 dmxpid 4887 fnopab 5382 fmpti 5714 opabex3 6179 oawordriexmid 6528 fifo 7046 inresflem 7126 0ct 7173 infnninf 7190 infnninfOLD 7191 exmidonfinlem 7260 pw1on 7293 netap 7321 2omotaplemap 7324 indpi 7409 nnindnn 7960 aptap 8677 sup3exmid 8984 nnssre 8994 nnind 9006 nnsub 9029 dfuzi 9436 indstr 9667 cnref1o 9725 frec2uzsucd 10493 uzsinds 10536 ser0f 10626 bccl 10859 rexuz3 11155 isumlessdc 11661 prodf1f 11708 iprodap0 11747 eff2 11845 reeff1 11865 prmind2 12288 3prm 12296 sqrt2irr 12330 phisum 12409 pockthi 12527 1arith 12536 1arith2 12537 prminf 12672 xpsff1o 12992 rngmgpf 13493 mgpf 13567 cnfld1 14128 cnsubglem 14135 isbasis3g 14282 distop 14321 cdivcncfap 14840 dveflem 14962 ioocosf1o 15090 2irrexpqap 15214 2sqlem6 15361 2sqlem10 15366 bj-indint 15577 bj-nnelirr 15599 bj-omord 15606 012of 15640 2o01f 15641 0nninf 15648 nconstwlpolem0 15707 | 
| Copyright terms: Public domain | W3C validator |