| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen | Unicode version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| rgen.1 |
|
| Ref | Expression |
|---|---|
| rgen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2480 |
. 2
| |
| 2 | rgen.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1467 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 |
| This theorem depends on definitions: df-bi 117 df-ral 2480 |
| This theorem is referenced by: rgen2a 2551 rgenw 2552 mprg 2554 mprgbir 2555 rgen2 2583 r19.21be 2588 nrex 2589 rexlimi 2607 sbcth2 3077 reuss 3445 ral0 3553 unimax 3874 mpteq1 4118 mpteq2ia 4120 ordon 4523 tfis 4620 finds 4637 finds2 4638 ordom 4644 omsinds 4659 dmxpid 4888 fnopab 5385 fmpti 5717 opabex3 6188 oawordriexmid 6537 fifo 7055 inresflem 7135 0ct 7182 infnninf 7199 infnninfOLD 7200 exmidonfinlem 7272 pw1on 7309 netap 7337 2omotaplemap 7340 indpi 7426 nnindnn 7977 aptap 8694 sup3exmid 9001 nnssre 9011 nnind 9023 nnsub 9046 dfuzi 9453 indstr 9684 cnref1o 9742 frec2uzsucd 10510 uzsinds 10553 ser0f 10643 bccl 10876 rexuz3 11172 isumlessdc 11678 prodf1f 11725 iprodap0 11764 eff2 11862 reeff1 11882 prmind2 12313 3prm 12321 sqrt2irr 12355 phisum 12434 pockthi 12552 1arith 12561 1arith2 12562 prminf 12697 xpsff1o 13051 rngmgpf 13569 mgpf 13643 cnfld1 14204 cnsubglem 14211 isbasis3g 14366 distop 14405 cdivcncfap 14924 dveflem 15046 ioocosf1o 15174 2irrexpqap 15298 2sqlem6 15445 2sqlem10 15450 bj-indint 15661 bj-nnelirr 15683 bj-omord 15690 012of 15724 2o01f 15725 0nninf 15735 nconstwlpolem0 15794 |
| Copyright terms: Public domain | W3C validator |