| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen | Unicode version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| rgen.1 |
|
| Ref | Expression |
|---|---|
| rgen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2513 |
. 2
| |
| 2 | rgen.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1499 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1495 |
| This theorem depends on definitions: df-bi 117 df-ral 2513 |
| This theorem is referenced by: rgen2a 2584 rgenw 2585 mprg 2587 mprgbir 2588 rgen2 2616 r19.21be 2621 nrex 2622 rexlimi 2641 sbcth2 3117 reuss 3485 ral0 3593 unimax 3922 mpteq1 4168 mpteq2ia 4170 ordon 4578 tfis 4675 finds 4692 finds2 4693 ordom 4699 omsinds 4714 dmxpid 4945 fnopab 5448 fmpti 5787 opabex3 6267 oawordriexmid 6616 fifo 7147 inresflem 7227 0ct 7274 infnninf 7291 infnninfOLD 7292 exmidonfinlem 7371 pw1on 7411 netap 7440 2omotaplemap 7443 indpi 7529 nnindnn 8080 aptap 8797 sup3exmid 9104 nnssre 9114 nnind 9126 nnsub 9149 dfuzi 9557 indstr 9788 cnref1o 9846 frec2uzsucd 10623 uzsinds 10666 ser0f 10756 bccl 10989 wrdind 11254 rexuz3 11501 isumlessdc 12007 prodf1f 12054 iprodap0 12093 eff2 12191 reeff1 12211 prmind2 12642 3prm 12650 sqrt2irr 12684 phisum 12763 pockthi 12881 1arith 12890 1arith2 12891 prminf 13026 xpsff1o 13382 rngmgpf 13900 mgpf 13974 cnfld1 14536 cnsubglem 14543 isbasis3g 14720 distop 14759 cdivcncfap 15278 dveflem 15400 ioocosf1o 15528 2irrexpqap 15652 2sqlem6 15799 2sqlem10 15804 bj-indint 16294 bj-nnelirr 16316 bj-omord 16323 012of 16357 2o01f 16358 0nninf 16370 nconstwlpolem0 16431 |
| Copyright terms: Public domain | W3C validator |