Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rgen | Unicode version |
Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
Ref | Expression |
---|---|
rgen.1 |
Ref | Expression |
---|---|
rgen |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2453 | . 2 | |
2 | rgen.1 | . 2 | |
3 | 1, 2 | mpgbir 1446 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2141 wral 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1442 |
This theorem depends on definitions: df-bi 116 df-ral 2453 |
This theorem is referenced by: rgen2a 2524 rgenw 2525 mprg 2527 mprgbir 2528 rgen2 2556 r19.21be 2561 nrex 2562 rexlimi 2580 sbcth2 3042 reuss 3408 ral0 3516 unimax 3830 mpteq1 4073 mpteq2ia 4075 ordon 4470 tfis 4567 finds 4584 finds2 4585 ordom 4591 omsinds 4606 dmxpid 4832 fnopab 5322 fmpti 5648 opabex3 6101 oawordriexmid 6449 fifo 6957 inresflem 7037 0ct 7084 infnninf 7100 infnninfOLD 7101 exmidonfinlem 7170 pw1on 7203 indpi 7304 nnindnn 7855 sup3exmid 8873 nnssre 8882 nnind 8894 nnsub 8917 dfuzi 9322 indstr 9552 cnref1o 9609 frec2uzsucd 10357 uzsinds 10398 ser0f 10471 bccl 10701 rexuz3 10954 isumlessdc 11459 prodf1f 11506 iprodap0 11545 eff2 11643 reeff1 11663 prmind2 12074 3prm 12082 sqrt2irr 12116 phisum 12194 pockthi 12310 1arith 12319 1arith2 12320 prminf 12410 isbasis3g 12838 distop 12879 cdivcncfap 13381 dveflem 13481 ioocosf1o 13569 2irrexpqap 13690 2sqlem6 13750 2sqlem10 13755 bj-indint 13966 bj-nnelirr 13988 bj-omord 13995 012of 14028 2o01f 14029 0nninf 14037 nconstwlpolem0 14094 |
Copyright terms: Public domain | W3C validator |