| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rgen | Unicode version | ||
| Description: Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.) |
| Ref | Expression |
|---|---|
| rgen.1 |
|
| Ref | Expression |
|---|---|
| rgen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2491 |
. 2
| |
| 2 | rgen.1 |
. 2
| |
| 3 | 1, 2 | mpgbir 1477 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 |
| This theorem depends on definitions: df-bi 117 df-ral 2491 |
| This theorem is referenced by: rgen2a 2562 rgenw 2563 mprg 2565 mprgbir 2566 rgen2 2594 r19.21be 2599 nrex 2600 rexlimi 2618 sbcth2 3094 reuss 3462 ral0 3570 unimax 3898 mpteq1 4144 mpteq2ia 4146 ordon 4552 tfis 4649 finds 4666 finds2 4667 ordom 4673 omsinds 4688 dmxpid 4918 fnopab 5420 fmpti 5755 opabex3 6230 oawordriexmid 6579 fifo 7108 inresflem 7188 0ct 7235 infnninf 7252 infnninfOLD 7253 exmidonfinlem 7332 pw1on 7372 netap 7401 2omotaplemap 7404 indpi 7490 nnindnn 8041 aptap 8758 sup3exmid 9065 nnssre 9075 nnind 9087 nnsub 9110 dfuzi 9518 indstr 9749 cnref1o 9807 frec2uzsucd 10583 uzsinds 10626 ser0f 10716 bccl 10949 wrdind 11213 rexuz3 11416 isumlessdc 11922 prodf1f 11969 iprodap0 12008 eff2 12106 reeff1 12126 prmind2 12557 3prm 12565 sqrt2irr 12599 phisum 12678 pockthi 12796 1arith 12805 1arith2 12806 prminf 12941 xpsff1o 13296 rngmgpf 13814 mgpf 13888 cnfld1 14449 cnsubglem 14456 isbasis3g 14633 distop 14672 cdivcncfap 15191 dveflem 15313 ioocosf1o 15441 2irrexpqap 15565 2sqlem6 15712 2sqlem10 15717 bj-indint 16066 bj-nnelirr 16088 bj-omord 16095 012of 16130 2o01f 16131 0nninf 16143 nconstwlpolem0 16204 |
| Copyright terms: Public domain | W3C validator |