ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isarep2 Unicode version

Theorem isarep2 5218
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature " [ i, 
[ i, i  ] => o  ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 5216. (Contributed by NM, 26-Oct-2006.)
Hypotheses
Ref Expression
isarep2.1  |-  A  e. 
_V
isarep2.2  |-  A. x  e.  A  A. y A. z ( ( ph  /\ 
[ z  /  y ] ph )  ->  y  =  z )
Assertion
Ref Expression
isarep2  |-  E. w  w  =  ( { <. x ,  y >.  |  ph } " A
)
Distinct variable groups:    x, w, y, A    y, z    ph, w    ph, z
Allowed substitution hints:    ph( x, y)    A( z)

Proof of Theorem isarep2
StepHypRef Expression
1 resima 4860 . . . 4  |-  ( ( { <. x ,  y
>.  |  ph }  |`  A )
" A )  =  ( { <. x ,  y >.  |  ph } " A )
2 resopab 4871 . . . . 5  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
32imaeq1i 4886 . . . 4  |-  ( ( { <. x ,  y
>.  |  ph }  |`  A )
" A )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } " A
)
41, 3eqtr3i 2163 . . 3  |-  ( {
<. x ,  y >.  |  ph } " A
)  =  ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } " A )
5 funopab 5166 . . . . 5  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } 
<-> 
A. x E* y
( x  e.  A  /\  ph ) )
6 isarep2.2 . . . . . . . 8  |-  A. x  e.  A  A. y A. z ( ( ph  /\ 
[ z  /  y ] ph )  ->  y  =  z )
76rspec 2487 . . . . . . 7  |-  ( x  e.  A  ->  A. y A. z ( ( ph  /\ 
[ z  /  y ] ph )  ->  y  =  z ) )
8 nfv 1509 . . . . . . . 8  |-  F/ z
ph
98mo3 2054 . . . . . . 7  |-  ( E* y ph  <->  A. y A. z ( ( ph  /\ 
[ z  /  y ] ph )  ->  y  =  z ) )
107, 9sylibr 133 . . . . . 6  |-  ( x  e.  A  ->  E* y ph )
11 moanimv 2075 . . . . . 6  |-  ( E* y ( x  e.  A  /\  ph )  <->  ( x  e.  A  ->  E* y ph ) )
1210, 11mpbir 145 . . . . 5  |-  E* y
( x  e.  A  /\  ph )
135, 12mpgbir 1430 . . . 4  |-  Fun  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
14 isarep2.1 . . . . 5  |-  A  e. 
_V
1514funimaex 5216 . . . 4  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  ->  ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } " A
)  e.  _V )
1613, 15ax-mp 5 . . 3  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } " A )  e. 
_V
174, 16eqeltri 2213 . 2  |-  ( {
<. x ,  y >.  |  ph } " A
)  e.  _V
1817isseti 2697 1  |-  E. w  w  =  ( { <. x ,  y >.  |  ph } " A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1330    = wceq 1332   E.wex 1469    e. wcel 1481   [wsb 1736   E*wmo 2001   A.wral 2417   _Vcvv 2689   {copab 3996    |` cres 4549   "cima 4550   Fun wfun 5125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-fun 5133
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator