ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isarep2 Unicode version

Theorem isarep2 5341
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. In Isabelle, the sethood of PrimReplace is apparently postulated implicitly by its type signature " [ i, 
[ i, i  ] => o  ] => i", which automatically asserts that it is a set without using any axioms. To prove that it is a set in Metamath, we need the hypotheses of Isabelle's "Axiom of Replacement" as well as the Axiom of Replacement in the form funimaex 5339. (Contributed by NM, 26-Oct-2006.)
Hypotheses
Ref Expression
isarep2.1  |-  A  e. 
_V
isarep2.2  |-  A. x  e.  A  A. y A. z ( ( ph  /\ 
[ z  /  y ] ph )  ->  y  =  z )
Assertion
Ref Expression
isarep2  |-  E. w  w  =  ( { <. x ,  y >.  |  ph } " A
)
Distinct variable groups:    x, w, y, A    y, z    ph, w    ph, z
Allowed substitution hints:    ph( x, y)    A( z)

Proof of Theorem isarep2
StepHypRef Expression
1 resima 4975 . . . 4  |-  ( ( { <. x ,  y
>.  |  ph }  |`  A )
" A )  =  ( { <. x ,  y >.  |  ph } " A )
2 resopab 4986 . . . . 5  |-  ( {
<. x ,  y >.  |  ph }  |`  A )  =  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
32imaeq1i 5002 . . . 4  |-  ( ( { <. x ,  y
>.  |  ph }  |`  A )
" A )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } " A
)
41, 3eqtr3i 2216 . . 3  |-  ( {
<. x ,  y >.  |  ph } " A
)  =  ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } " A )
5 funopab 5289 . . . . 5  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  A  /\  ph ) } 
<-> 
A. x E* y
( x  e.  A  /\  ph ) )
6 isarep2.2 . . . . . . . 8  |-  A. x  e.  A  A. y A. z ( ( ph  /\ 
[ z  /  y ] ph )  ->  y  =  z )
76rspec 2546 . . . . . . 7  |-  ( x  e.  A  ->  A. y A. z ( ( ph  /\ 
[ z  /  y ] ph )  ->  y  =  z ) )
8 nfv 1539 . . . . . . . 8  |-  F/ z
ph
98mo3 2096 . . . . . . 7  |-  ( E* y ph  <->  A. y A. z ( ( ph  /\ 
[ z  /  y ] ph )  ->  y  =  z ) )
107, 9sylibr 134 . . . . . 6  |-  ( x  e.  A  ->  E* y ph )
11 moanimv 2117 . . . . . 6  |-  ( E* y ( x  e.  A  /\  ph )  <->  ( x  e.  A  ->  E* y ph ) )
1210, 11mpbir 146 . . . . 5  |-  E* y
( x  e.  A  /\  ph )
135, 12mpgbir 1464 . . . 4  |-  Fun  { <. x ,  y >.  |  ( x  e.  A  /\  ph ) }
14 isarep2.1 . . . . 5  |-  A  e. 
_V
1514funimaex 5339 . . . 4  |-  ( Fun 
{ <. x ,  y
>.  |  ( x  e.  A  /\  ph ) }  ->  ( { <. x ,  y >.  |  ( x  e.  A  /\  ph ) } " A
)  e.  _V )
1613, 15ax-mp 5 . . 3  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  ph ) } " A )  e. 
_V
174, 16eqeltri 2266 . 2  |-  ( {
<. x ,  y >.  |  ph } " A
)  e.  _V
1817isseti 2768 1  |-  E. w  w  =  ( { <. x ,  y >.  |  ph } " A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364   E.wex 1503   [wsb 1773   E*wmo 2043    e. wcel 2164   A.wral 2472   _Vcvv 2760   {copab 4089    |` cres 4661   "cima 4662   Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-fun 5256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator