ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspsbca Unicode version

Theorem rspsbca 2922
Description: Restricted quantifier version of Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 14-Dec-2005.)
Assertion
Ref Expression
rspsbca  |-  ( ( A  e.  B  /\  A. x  e.  B  ph )  ->  [. A  /  x ]. ph )
Distinct variable group:    x, B
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem rspsbca
StepHypRef Expression
1 rspsbc 2921 . 2  |-  ( A  e.  B  ->  ( A. x  e.  B  ph 
->  [. A  /  x ]. ph ) )
21imp 122 1  |-  ( ( A  e.  B  /\  A. x  e.  B  ph )  ->  [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1438   A.wral 2359   [.wsbc 2840
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-v 2621  df-sbc 2841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator