ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspesbca Unicode version

Theorem rspesbca 2965
Description: Existence form of rspsbca 2964. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspesbca  |-  ( ( A  e.  B  /\  [. A  /  x ]. ph )  ->  E. x  e.  B  ph )
Distinct variable group:    x, B
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem rspesbca
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2885 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
21rspcev 2763 . 2  |-  ( ( A  e.  B  /\  [. A  /  x ]. ph )  ->  E. y  e.  B  [ y  /  x ] ph )
3 cbvrexsv 2643 . 2  |-  ( E. x  e.  B  ph  <->  E. y  e.  B  [
y  /  x ] ph )
42, 3sylibr 133 1  |-  ( ( A  e.  B  /\  [. A  /  x ]. ph )  ->  E. x  e.  B  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1465   [wsb 1720   E.wrex 2394   [.wsbc 2882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099
This theorem depends on definitions:  df-bi 116  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-rex 2399  df-v 2662  df-sbc 2883
This theorem is referenced by:  spesbc  2966
  Copyright terms: Public domain W3C validator