ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspesbca Unicode version

Theorem rspesbca 3074
Description: Existence form of rspsbca 3073. (Contributed by NM, 29-Feb-2008.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
rspesbca  |-  ( ( A  e.  B  /\  [. A  /  x ]. ph )  ->  E. x  e.  B  ph )
Distinct variable group:    x, B
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem rspesbca
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq2 2992 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
21rspcev 2868 . 2  |-  ( ( A  e.  B  /\  [. A  /  x ]. ph )  ->  E. y  e.  B  [ y  /  x ] ph )
3 cbvrexsv 2746 . 2  |-  ( E. x  e.  B  ph  <->  E. y  e.  B  [
y  /  x ] ph )
42, 3sylibr 134 1  |-  ( ( A  e.  B  /\  [. A  /  x ]. ph )  ->  E. x  e.  B  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   [wsb 1776    e. wcel 2167   E.wrex 2476   [.wsbc 2989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-sbc 2990
This theorem is referenced by:  spesbc  3075
  Copyright terms: Public domain W3C validator