| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodmodd | Unicode version | ||
| Description: If all factors of two
finite products are equal modulo |
| Ref | Expression |
|---|---|
| fprodmodd.a |
|
| fprodmodd.b |
|
| fprodmodd.c |
|
| fprodmodd.m |
|
| fprodmodd.p |
|
| Ref | Expression |
|---|---|
| fprodmodd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodeq1 11979 |
. . . 4
| |
| 2 | 1 | oveq1d 5982 |
. . 3
|
| 3 | prodeq1 11979 |
. . . 4
| |
| 4 | 3 | oveq1d 5982 |
. . 3
|
| 5 | 2, 4 | eqeq12d 2222 |
. 2
|
| 6 | prodeq1 11979 |
. . . 4
| |
| 7 | 6 | oveq1d 5982 |
. . 3
|
| 8 | prodeq1 11979 |
. . . 4
| |
| 9 | 8 | oveq1d 5982 |
. . 3
|
| 10 | 7, 9 | eqeq12d 2222 |
. 2
|
| 11 | prodeq1 11979 |
. . . 4
| |
| 12 | 11 | oveq1d 5982 |
. . 3
|
| 13 | prodeq1 11979 |
. . . 4
| |
| 14 | 13 | oveq1d 5982 |
. . 3
|
| 15 | 12, 14 | eqeq12d 2222 |
. 2
|
| 16 | prodeq1 11979 |
. . . 4
| |
| 17 | 16 | oveq1d 5982 |
. . 3
|
| 18 | prodeq1 11979 |
. . . 4
| |
| 19 | 18 | oveq1d 5982 |
. . 3
|
| 20 | 17, 19 | eqeq12d 2222 |
. 2
|
| 21 | prod0 12011 |
. . . . 5
| |
| 22 | 21 | a1i 9 |
. . . 4
|
| 23 | 22 | oveq1d 5982 |
. . 3
|
| 24 | prod0 12011 |
. . . . 5
| |
| 25 | 24 | eqcomi 2211 |
. . . 4
|
| 26 | 25 | oveq1i 5977 |
. . 3
|
| 27 | 23, 26 | eqtrdi 2256 |
. 2
|
| 28 | nfcsb1v 3134 |
. . . . . . 7
| |
| 29 | simplr 528 |
. . . . . . 7
| |
| 30 | simprr 531 |
. . . . . . 7
| |
| 31 | simprr 531 |
. . . . . . . . 9
| |
| 32 | 31 | eldifbd 3186 |
. . . . . . . 8
|
| 33 | 32 | adantlr 477 |
. . . . . . 7
|
| 34 | simpll 527 |
. . . . . . . . . 10
| |
| 35 | ssel 3195 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | adantr 276 |
. . . . . . . . . . . 12
|
| 37 | 36 | adantl 277 |
. . . . . . . . . . 11
|
| 38 | 37 | imp 124 |
. . . . . . . . . 10
|
| 39 | fprodmodd.b |
. . . . . . . . . 10
| |
| 40 | 34, 38, 39 | syl2anc 411 |
. . . . . . . . 9
|
| 41 | 40 | zcnd 9531 |
. . . . . . . 8
|
| 42 | 41 | adantllr 481 |
. . . . . . 7
|
| 43 | eldifi 3303 |
. . . . . . . . . . 11
| |
| 44 | 43 | adantl 277 |
. . . . . . . . . 10
|
| 45 | 39 | ralrimiva 2581 |
. . . . . . . . . 10
|
| 46 | rspcsbela 3161 |
. . . . . . . . . 10
| |
| 47 | 44, 45, 46 | syl2anr 290 |
. . . . . . . . 9
|
| 48 | 47 | zcnd 9531 |
. . . . . . . 8
|
| 49 | 48 | adantlr 477 |
. . . . . . 7
|
| 50 | csbeq1a 3110 |
. . . . . . 7
| |
| 51 | 28, 29, 30, 33, 42, 49, 50 | fprodunsn 12030 |
. . . . . 6
|
| 52 | 51 | oveq1d 5982 |
. . . . 5
|
| 53 | 52 | adantr 276 |
. . . 4
|
| 54 | 40 | adantllr 481 |
. . . . . . 7
|
| 55 | 29, 54 | fprodzcl 12035 |
. . . . . 6
|
| 56 | 55 | adantr 276 |
. . . . 5
|
| 57 | fprodmodd.c |
. . . . . . . . 9
| |
| 58 | 34, 38, 57 | syl2anc 411 |
. . . . . . . 8
|
| 59 | 58 | adantllr 481 |
. . . . . . 7
|
| 60 | 29, 59 | fprodzcl 12035 |
. . . . . 6
|
| 61 | 60 | adantr 276 |
. . . . 5
|
| 62 | 47 | ad4ant13 513 |
. . . . 5
|
| 63 | 57 | ralrimiva 2581 |
. . . . . . 7
|
| 64 | rspcsbela 3161 |
. . . . . . 7
| |
| 65 | 44, 63, 64 | syl2anr 290 |
. . . . . 6
|
| 66 | 65 | ad4ant13 513 |
. . . . 5
|
| 67 | fprodmodd.m |
. . . . . . 7
| |
| 68 | nnq 9789 |
. . . . . . 7
| |
| 69 | 67, 68 | syl 14 |
. . . . . 6
|
| 70 | 69 | ad3antrrr 492 |
. . . . 5
|
| 71 | 67 | nngt0d 9115 |
. . . . . 6
|
| 72 | 71 | ad3antrrr 492 |
. . . . 5
|
| 73 | simpr 110 |
. . . . 5
| |
| 74 | fprodmodd.p |
. . . . . . . . . 10
| |
| 75 | 74 | ralrimiva 2581 |
. . . . . . . . 9
|
| 76 | rspsbca 3090 |
. . . . . . . . 9
| |
| 77 | 44, 75, 76 | syl2anr 290 |
. . . . . . . 8
|
| 78 | vex 2779 |
. . . . . . . . 9
| |
| 79 | sbceqg 3117 |
. . . . . . . . 9
| |
| 80 | 78, 79 | mp1i 10 |
. . . . . . . 8
|
| 81 | 77, 80 | mpbid 147 |
. . . . . . 7
|
| 82 | csbov1g 6008 |
. . . . . . . 8
| |
| 83 | 82 | elv 2780 |
. . . . . . 7
|
| 84 | csbov1g 6008 |
. . . . . . . 8
| |
| 85 | 84 | elv 2780 |
. . . . . . 7
|
| 86 | 81, 83, 85 | 3eqtr3g 2263 |
. . . . . 6
|
| 87 | 86 | ad4ant13 513 |
. . . . 5
|
| 88 | 56, 61, 62, 66, 70, 72, 73, 87 | modqmul12d 10560 |
. . . 4
|
| 89 | nfcsb1v 3134 |
. . . . . . . 8
| |
| 90 | 58 | zcnd 9531 |
. . . . . . . . 9
|
| 91 | 90 | adantllr 481 |
. . . . . . . 8
|
| 92 | 65 | zcnd 9531 |
. . . . . . . . 9
|
| 93 | 92 | adantlr 477 |
. . . . . . . 8
|
| 94 | csbeq1a 3110 |
. . . . . . . 8
| |
| 95 | 89, 29, 30, 33, 91, 93, 94 | fprodunsn 12030 |
. . . . . . 7
|
| 96 | 95 | oveq1d 5982 |
. . . . . 6
|
| 97 | 96 | eqcomd 2213 |
. . . . 5
|
| 98 | 97 | adantr 276 |
. . . 4
|
| 99 | 53, 88, 98 | 3eqtrd 2244 |
. . 3
|
| 100 | 99 | ex 115 |
. 2
|
| 101 | fprodmodd.a |
. 2
| |
| 102 | 5, 10, 15, 20, 27, 100, 101 | findcard2sd 7015 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-fl 10450 df-mod 10505 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-proddc 11977 |
| This theorem is referenced by: gausslemma2dlem5a 15657 |
| Copyright terms: Public domain | W3C validator |