| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodmodd | Unicode version | ||
| Description: If all factors of two
finite products are equal modulo |
| Ref | Expression |
|---|---|
| fprodmodd.a |
|
| fprodmodd.b |
|
| fprodmodd.c |
|
| fprodmodd.m |
|
| fprodmodd.p |
|
| Ref | Expression |
|---|---|
| fprodmodd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodeq1 12059 |
. . . 4
| |
| 2 | 1 | oveq1d 6015 |
. . 3
|
| 3 | prodeq1 12059 |
. . . 4
| |
| 4 | 3 | oveq1d 6015 |
. . 3
|
| 5 | 2, 4 | eqeq12d 2244 |
. 2
|
| 6 | prodeq1 12059 |
. . . 4
| |
| 7 | 6 | oveq1d 6015 |
. . 3
|
| 8 | prodeq1 12059 |
. . . 4
| |
| 9 | 8 | oveq1d 6015 |
. . 3
|
| 10 | 7, 9 | eqeq12d 2244 |
. 2
|
| 11 | prodeq1 12059 |
. . . 4
| |
| 12 | 11 | oveq1d 6015 |
. . 3
|
| 13 | prodeq1 12059 |
. . . 4
| |
| 14 | 13 | oveq1d 6015 |
. . 3
|
| 15 | 12, 14 | eqeq12d 2244 |
. 2
|
| 16 | prodeq1 12059 |
. . . 4
| |
| 17 | 16 | oveq1d 6015 |
. . 3
|
| 18 | prodeq1 12059 |
. . . 4
| |
| 19 | 18 | oveq1d 6015 |
. . 3
|
| 20 | 17, 19 | eqeq12d 2244 |
. 2
|
| 21 | prod0 12091 |
. . . . 5
| |
| 22 | 21 | a1i 9 |
. . . 4
|
| 23 | 22 | oveq1d 6015 |
. . 3
|
| 24 | prod0 12091 |
. . . . 5
| |
| 25 | 24 | eqcomi 2233 |
. . . 4
|
| 26 | 25 | oveq1i 6010 |
. . 3
|
| 27 | 23, 26 | eqtrdi 2278 |
. 2
|
| 28 | nfcsb1v 3157 |
. . . . . . 7
| |
| 29 | simplr 528 |
. . . . . . 7
| |
| 30 | simprr 531 |
. . . . . . 7
| |
| 31 | simprr 531 |
. . . . . . . . 9
| |
| 32 | 31 | eldifbd 3209 |
. . . . . . . 8
|
| 33 | 32 | adantlr 477 |
. . . . . . 7
|
| 34 | simpll 527 |
. . . . . . . . . 10
| |
| 35 | ssel 3218 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | adantr 276 |
. . . . . . . . . . . 12
|
| 37 | 36 | adantl 277 |
. . . . . . . . . . 11
|
| 38 | 37 | imp 124 |
. . . . . . . . . 10
|
| 39 | fprodmodd.b |
. . . . . . . . . 10
| |
| 40 | 34, 38, 39 | syl2anc 411 |
. . . . . . . . 9
|
| 41 | 40 | zcnd 9566 |
. . . . . . . 8
|
| 42 | 41 | adantllr 481 |
. . . . . . 7
|
| 43 | eldifi 3326 |
. . . . . . . . . . 11
| |
| 44 | 43 | adantl 277 |
. . . . . . . . . 10
|
| 45 | 39 | ralrimiva 2603 |
. . . . . . . . . 10
|
| 46 | rspcsbela 3184 |
. . . . . . . . . 10
| |
| 47 | 44, 45, 46 | syl2anr 290 |
. . . . . . . . 9
|
| 48 | 47 | zcnd 9566 |
. . . . . . . 8
|
| 49 | 48 | adantlr 477 |
. . . . . . 7
|
| 50 | csbeq1a 3133 |
. . . . . . 7
| |
| 51 | 28, 29, 30, 33, 42, 49, 50 | fprodunsn 12110 |
. . . . . 6
|
| 52 | 51 | oveq1d 6015 |
. . . . 5
|
| 53 | 52 | adantr 276 |
. . . 4
|
| 54 | 40 | adantllr 481 |
. . . . . . 7
|
| 55 | 29, 54 | fprodzcl 12115 |
. . . . . 6
|
| 56 | 55 | adantr 276 |
. . . . 5
|
| 57 | fprodmodd.c |
. . . . . . . . 9
| |
| 58 | 34, 38, 57 | syl2anc 411 |
. . . . . . . 8
|
| 59 | 58 | adantllr 481 |
. . . . . . 7
|
| 60 | 29, 59 | fprodzcl 12115 |
. . . . . 6
|
| 61 | 60 | adantr 276 |
. . . . 5
|
| 62 | 47 | ad4ant13 513 |
. . . . 5
|
| 63 | 57 | ralrimiva 2603 |
. . . . . . 7
|
| 64 | rspcsbela 3184 |
. . . . . . 7
| |
| 65 | 44, 63, 64 | syl2anr 290 |
. . . . . 6
|
| 66 | 65 | ad4ant13 513 |
. . . . 5
|
| 67 | fprodmodd.m |
. . . . . . 7
| |
| 68 | nnq 9824 |
. . . . . . 7
| |
| 69 | 67, 68 | syl 14 |
. . . . . 6
|
| 70 | 69 | ad3antrrr 492 |
. . . . 5
|
| 71 | 67 | nngt0d 9150 |
. . . . . 6
|
| 72 | 71 | ad3antrrr 492 |
. . . . 5
|
| 73 | simpr 110 |
. . . . 5
| |
| 74 | fprodmodd.p |
. . . . . . . . . 10
| |
| 75 | 74 | ralrimiva 2603 |
. . . . . . . . 9
|
| 76 | rspsbca 3113 |
. . . . . . . . 9
| |
| 77 | 44, 75, 76 | syl2anr 290 |
. . . . . . . 8
|
| 78 | vex 2802 |
. . . . . . . . 9
| |
| 79 | sbceqg 3140 |
. . . . . . . . 9
| |
| 80 | 78, 79 | mp1i 10 |
. . . . . . . 8
|
| 81 | 77, 80 | mpbid 147 |
. . . . . . 7
|
| 82 | csbov1g 6041 |
. . . . . . . 8
| |
| 83 | 82 | elv 2803 |
. . . . . . 7
|
| 84 | csbov1g 6041 |
. . . . . . . 8
| |
| 85 | 84 | elv 2803 |
. . . . . . 7
|
| 86 | 81, 83, 85 | 3eqtr3g 2285 |
. . . . . 6
|
| 87 | 86 | ad4ant13 513 |
. . . . 5
|
| 88 | 56, 61, 62, 66, 70, 72, 73, 87 | modqmul12d 10595 |
. . . 4
|
| 89 | nfcsb1v 3157 |
. . . . . . . 8
| |
| 90 | 58 | zcnd 9566 |
. . . . . . . . 9
|
| 91 | 90 | adantllr 481 |
. . . . . . . 8
|
| 92 | 65 | zcnd 9566 |
. . . . . . . . 9
|
| 93 | 92 | adantlr 477 |
. . . . . . . 8
|
| 94 | csbeq1a 3133 |
. . . . . . . 8
| |
| 95 | 89, 29, 30, 33, 91, 93, 94 | fprodunsn 12110 |
. . . . . . 7
|
| 96 | 95 | oveq1d 6015 |
. . . . . 6
|
| 97 | 96 | eqcomd 2235 |
. . . . 5
|
| 98 | 97 | adantr 276 |
. . . 4
|
| 99 | 53, 88, 98 | 3eqtrd 2266 |
. . 3
|
| 100 | 99 | ex 115 |
. 2
|
| 101 | fprodmodd.a |
. 2
| |
| 102 | 5, 10, 15, 20, 27, 100, 101 | findcard2sd 7050 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-fzo 10335 df-fl 10485 df-mod 10540 df-seqfrec 10665 df-exp 10756 df-ihash 10993 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-proddc 12057 |
| This theorem is referenced by: gausslemma2dlem5a 15738 |
| Copyright terms: Public domain | W3C validator |