| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fprodmodd | Unicode version | ||
| Description: If all factors of two
finite products are equal modulo |
| Ref | Expression |
|---|---|
| fprodmodd.a |
|
| fprodmodd.b |
|
| fprodmodd.c |
|
| fprodmodd.m |
|
| fprodmodd.p |
|
| Ref | Expression |
|---|---|
| fprodmodd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodeq1 11718 |
. . . 4
| |
| 2 | 1 | oveq1d 5937 |
. . 3
|
| 3 | prodeq1 11718 |
. . . 4
| |
| 4 | 3 | oveq1d 5937 |
. . 3
|
| 5 | 2, 4 | eqeq12d 2211 |
. 2
|
| 6 | prodeq1 11718 |
. . . 4
| |
| 7 | 6 | oveq1d 5937 |
. . 3
|
| 8 | prodeq1 11718 |
. . . 4
| |
| 9 | 8 | oveq1d 5937 |
. . 3
|
| 10 | 7, 9 | eqeq12d 2211 |
. 2
|
| 11 | prodeq1 11718 |
. . . 4
| |
| 12 | 11 | oveq1d 5937 |
. . 3
|
| 13 | prodeq1 11718 |
. . . 4
| |
| 14 | 13 | oveq1d 5937 |
. . 3
|
| 15 | 12, 14 | eqeq12d 2211 |
. 2
|
| 16 | prodeq1 11718 |
. . . 4
| |
| 17 | 16 | oveq1d 5937 |
. . 3
|
| 18 | prodeq1 11718 |
. . . 4
| |
| 19 | 18 | oveq1d 5937 |
. . 3
|
| 20 | 17, 19 | eqeq12d 2211 |
. 2
|
| 21 | prod0 11750 |
. . . . 5
| |
| 22 | 21 | a1i 9 |
. . . 4
|
| 23 | 22 | oveq1d 5937 |
. . 3
|
| 24 | prod0 11750 |
. . . . 5
| |
| 25 | 24 | eqcomi 2200 |
. . . 4
|
| 26 | 25 | oveq1i 5932 |
. . 3
|
| 27 | 23, 26 | eqtrdi 2245 |
. 2
|
| 28 | nfcsb1v 3117 |
. . . . . . 7
| |
| 29 | simplr 528 |
. . . . . . 7
| |
| 30 | simprr 531 |
. . . . . . 7
| |
| 31 | simprr 531 |
. . . . . . . . 9
| |
| 32 | 31 | eldifbd 3169 |
. . . . . . . 8
|
| 33 | 32 | adantlr 477 |
. . . . . . 7
|
| 34 | simpll 527 |
. . . . . . . . . 10
| |
| 35 | ssel 3177 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | adantr 276 |
. . . . . . . . . . . 12
|
| 37 | 36 | adantl 277 |
. . . . . . . . . . 11
|
| 38 | 37 | imp 124 |
. . . . . . . . . 10
|
| 39 | fprodmodd.b |
. . . . . . . . . 10
| |
| 40 | 34, 38, 39 | syl2anc 411 |
. . . . . . . . 9
|
| 41 | 40 | zcnd 9449 |
. . . . . . . 8
|
| 42 | 41 | adantllr 481 |
. . . . . . 7
|
| 43 | eldifi 3285 |
. . . . . . . . . . 11
| |
| 44 | 43 | adantl 277 |
. . . . . . . . . 10
|
| 45 | 39 | ralrimiva 2570 |
. . . . . . . . . 10
|
| 46 | rspcsbela 3144 |
. . . . . . . . . 10
| |
| 47 | 44, 45, 46 | syl2anr 290 |
. . . . . . . . 9
|
| 48 | 47 | zcnd 9449 |
. . . . . . . 8
|
| 49 | 48 | adantlr 477 |
. . . . . . 7
|
| 50 | csbeq1a 3093 |
. . . . . . 7
| |
| 51 | 28, 29, 30, 33, 42, 49, 50 | fprodunsn 11769 |
. . . . . 6
|
| 52 | 51 | oveq1d 5937 |
. . . . 5
|
| 53 | 52 | adantr 276 |
. . . 4
|
| 54 | 40 | adantllr 481 |
. . . . . . 7
|
| 55 | 29, 54 | fprodzcl 11774 |
. . . . . 6
|
| 56 | 55 | adantr 276 |
. . . . 5
|
| 57 | fprodmodd.c |
. . . . . . . . 9
| |
| 58 | 34, 38, 57 | syl2anc 411 |
. . . . . . . 8
|
| 59 | 58 | adantllr 481 |
. . . . . . 7
|
| 60 | 29, 59 | fprodzcl 11774 |
. . . . . 6
|
| 61 | 60 | adantr 276 |
. . . . 5
|
| 62 | 47 | ad4ant13 513 |
. . . . 5
|
| 63 | 57 | ralrimiva 2570 |
. . . . . . 7
|
| 64 | rspcsbela 3144 |
. . . . . . 7
| |
| 65 | 44, 63, 64 | syl2anr 290 |
. . . . . 6
|
| 66 | 65 | ad4ant13 513 |
. . . . 5
|
| 67 | fprodmodd.m |
. . . . . . 7
| |
| 68 | nnq 9707 |
. . . . . . 7
| |
| 69 | 67, 68 | syl 14 |
. . . . . 6
|
| 70 | 69 | ad3antrrr 492 |
. . . . 5
|
| 71 | 67 | nngt0d 9034 |
. . . . . 6
|
| 72 | 71 | ad3antrrr 492 |
. . . . 5
|
| 73 | simpr 110 |
. . . . 5
| |
| 74 | fprodmodd.p |
. . . . . . . . . 10
| |
| 75 | 74 | ralrimiva 2570 |
. . . . . . . . 9
|
| 76 | rspsbca 3073 |
. . . . . . . . 9
| |
| 77 | 44, 75, 76 | syl2anr 290 |
. . . . . . . 8
|
| 78 | vex 2766 |
. . . . . . . . 9
| |
| 79 | sbceqg 3100 |
. . . . . . . . 9
| |
| 80 | 78, 79 | mp1i 10 |
. . . . . . . 8
|
| 81 | 77, 80 | mpbid 147 |
. . . . . . 7
|
| 82 | csbov1g 5962 |
. . . . . . . 8
| |
| 83 | 82 | elv 2767 |
. . . . . . 7
|
| 84 | csbov1g 5962 |
. . . . . . . 8
| |
| 85 | 84 | elv 2767 |
. . . . . . 7
|
| 86 | 81, 83, 85 | 3eqtr3g 2252 |
. . . . . 6
|
| 87 | 86 | ad4ant13 513 |
. . . . 5
|
| 88 | 56, 61, 62, 66, 70, 72, 73, 87 | modqmul12d 10470 |
. . . 4
|
| 89 | nfcsb1v 3117 |
. . . . . . . 8
| |
| 90 | 58 | zcnd 9449 |
. . . . . . . . 9
|
| 91 | 90 | adantllr 481 |
. . . . . . . 8
|
| 92 | 65 | zcnd 9449 |
. . . . . . . . 9
|
| 93 | 92 | adantlr 477 |
. . . . . . . 8
|
| 94 | csbeq1a 3093 |
. . . . . . . 8
| |
| 95 | 89, 29, 30, 33, 91, 93, 94 | fprodunsn 11769 |
. . . . . . 7
|
| 96 | 95 | oveq1d 5937 |
. . . . . 6
|
| 97 | 96 | eqcomd 2202 |
. . . . 5
|
| 98 | 97 | adantr 276 |
. . . 4
|
| 99 | 53, 88, 98 | 3eqtrd 2233 |
. . 3
|
| 100 | 99 | ex 115 |
. 2
|
| 101 | fprodmodd.a |
. 2
| |
| 102 | 5, 10, 15, 20, 27, 100, 101 | findcard2sd 6953 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-frec 6449 df-1o 6474 df-oadd 6478 df-er 6592 df-en 6800 df-dom 6801 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-ihash 10868 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-clim 11444 df-proddc 11716 |
| This theorem is referenced by: gausslemma2dlem5a 15306 |
| Copyright terms: Public domain | W3C validator |