ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodmodd Unicode version

Theorem fprodmodd 11784
Description: If all factors of two finite products are equal modulo  M, the products are equal modulo  M. (Contributed by AV, 7-Jul-2021.)
Hypotheses
Ref Expression
fprodmodd.a  |-  ( ph  ->  A  e.  Fin )
fprodmodd.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ZZ )
fprodmodd.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ZZ )
fprodmodd.m  |-  ( ph  ->  M  e.  NN )
fprodmodd.p  |-  ( (
ph  /\  k  e.  A )  ->  ( B  mod  M )  =  ( C  mod  M
) )
Assertion
Ref Expression
fprodmodd  |-  ( ph  ->  ( prod_ k  e.  A  B  mod  M )  =  ( prod_ k  e.  A  C  mod  M ) )
Distinct variable groups:    A, k    k, M    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem fprodmodd
Dummy variables  i  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11696 . . . 4  |-  ( x  =  (/)  ->  prod_ k  e.  x  B  =  prod_ k  e.  (/)  B )
21oveq1d 5933 . . 3  |-  ( x  =  (/)  ->  ( prod_
k  e.  x  B  mod  M )  =  ( prod_ k  e.  (/)  B  mod  M ) )
3 prodeq1 11696 . . . 4  |-  ( x  =  (/)  ->  prod_ k  e.  x  C  =  prod_ k  e.  (/)  C )
43oveq1d 5933 . . 3  |-  ( x  =  (/)  ->  ( prod_
k  e.  x  C  mod  M )  =  ( prod_ k  e.  (/)  C  mod  M ) )
52, 4eqeq12d 2208 . 2  |-  ( x  =  (/)  ->  ( (
prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  (/)  B  mod  M
)  =  ( prod_
k  e.  (/)  C  mod  M ) ) )
6 prodeq1 11696 . . . 4  |-  ( x  =  y  ->  prod_ k  e.  x  B  = 
prod_ k  e.  y  B )
76oveq1d 5933 . . 3  |-  ( x  =  y  ->  ( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  y  B  mod  M ) )
8 prodeq1 11696 . . . 4  |-  ( x  =  y  ->  prod_ k  e.  x  C  = 
prod_ k  e.  y  C )
98oveq1d 5933 . . 3  |-  ( x  =  y  ->  ( prod_ k  e.  x  C  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )
107, 9eqeq12d 2208 . 2  |-  ( x  =  y  ->  (
( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  y  B  mod  M )  =  ( prod_
k  e.  y  C  mod  M ) ) )
11 prodeq1 11696 . . . 4  |-  ( x  =  ( y  u. 
{ i } )  ->  prod_ k  e.  x  B  =  prod_ k  e.  ( y  u.  {
i } ) B )
1211oveq1d 5933 . . 3  |-  ( x  =  ( y  u. 
{ i } )  ->  ( prod_ k  e.  x  B  mod  M )  =  ( prod_
k  e.  ( y  u.  { i } ) B  mod  M
) )
13 prodeq1 11696 . . . 4  |-  ( x  =  ( y  u. 
{ i } )  ->  prod_ k  e.  x  C  =  prod_ k  e.  ( y  u.  {
i } ) C )
1413oveq1d 5933 . . 3  |-  ( x  =  ( y  u. 
{ i } )  ->  ( prod_ k  e.  x  C  mod  M )  =  ( prod_
k  e.  ( y  u.  { i } ) C  mod  M
) )
1512, 14eqeq12d 2208 . 2  |-  ( x  =  ( y  u. 
{ i } )  ->  ( ( prod_
k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  ( y  u. 
{ i } ) B  mod  M )  =  ( prod_ k  e.  ( y  u.  {
i } ) C  mod  M ) ) )
16 prodeq1 11696 . . . 4  |-  ( x  =  A  ->  prod_ k  e.  x  B  = 
prod_ k  e.  A  B )
1716oveq1d 5933 . . 3  |-  ( x  =  A  ->  ( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  A  B  mod  M ) )
18 prodeq1 11696 . . . 4  |-  ( x  =  A  ->  prod_ k  e.  x  C  = 
prod_ k  e.  A  C )
1918oveq1d 5933 . . 3  |-  ( x  =  A  ->  ( prod_ k  e.  x  C  mod  M )  =  ( prod_ k  e.  A  C  mod  M ) )
2017, 19eqeq12d 2208 . 2  |-  ( x  =  A  ->  (
( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  A  B  mod  M )  =  ( prod_
k  e.  A  C  mod  M ) ) )
21 prod0 11728 . . . . 5  |-  prod_ k  e.  (/)  B  =  1
2221a1i 9 . . . 4  |-  ( ph  ->  prod_ k  e.  (/)  B  =  1 )
2322oveq1d 5933 . . 3  |-  ( ph  ->  ( prod_ k  e.  (/)  B  mod  M )  =  ( 1  mod  M
) )
24 prod0 11728 . . . . 5  |-  prod_ k  e.  (/)  C  =  1
2524eqcomi 2197 . . . 4  |-  1  =  prod_ k  e.  (/)  C
2625oveq1i 5928 . . 3  |-  ( 1  mod  M )  =  ( prod_ k  e.  (/)  C  mod  M )
2723, 26eqtrdi 2242 . 2  |-  ( ph  ->  ( prod_ k  e.  (/)  B  mod  M )  =  ( prod_ k  e.  (/)  C  mod  M ) )
28 nfcsb1v 3113 . . . . . . 7  |-  F/_ k [_ i  /  k ]_ B
29 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
30 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  i  e.  ( A  \  y ) )
31 simprr 531 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
i  e.  ( A 
\  y ) )
3231eldifbd 3165 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  -.  i  e.  y
)
3332adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  -.  i  e.  y )
34 simpll 527 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  ph )
35 ssel 3173 . . . . . . . . . . . . 13  |-  ( y 
C_  A  ->  (
k  e.  y  -> 
k  e.  A ) )
3635adantr 276 . . . . . . . . . . . 12  |-  ( ( y  C_  A  /\  i  e.  ( A  \  y ) )  -> 
( k  e.  y  ->  k  e.  A
) )
3736adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
( k  e.  y  ->  k  e.  A
) )
3837imp 124 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  A )
39 fprodmodd.b . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ZZ )
4034, 38, 39syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  ZZ )
4140zcnd 9440 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
4241adantllr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
43 eldifi 3281 . . . . . . . . . . 11  |-  ( i  e.  ( A  \ 
y )  ->  i  e.  A )
4443adantl 277 . . . . . . . . . 10  |-  ( ( y  C_  A  /\  i  e.  ( A  \  y ) )  -> 
i  e.  A )
4539ralrimiva 2567 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )
46 rspcsbela 3140 . . . . . . . . . 10  |-  ( ( i  e.  A  /\  A. k  e.  A  B  e.  ZZ )  ->  [_ i  /  k ]_ B  e.  ZZ )
4744, 45, 46syl2anr 290 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ B  e.  ZZ )
4847zcnd 9440 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ B  e.  CC )
4948adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  [_ i  /  k ]_ B  e.  CC )
50 csbeq1a 3089 . . . . . . 7  |-  ( k  =  i  ->  B  =  [_ i  /  k ]_ B )
5128, 29, 30, 33, 42, 49, 50fprodunsn 11747 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { i } ) B  =  ( prod_ k  e.  y  B  x.  [_ i  /  k ]_ B
) )
5251oveq1d 5933 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
i } ) B  mod  M )  =  ( ( prod_ k  e.  y  B  x.  [_ i  /  k ]_ B )  mod  M
) )
5352adantr 276 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( prod_ k  e.  ( y  u. 
{ i } ) B  mod  M )  =  ( ( prod_
k  e.  y  B  x.  [_ i  / 
k ]_ B )  mod 
M ) )
5440adantllr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  ZZ )
5529, 54fprodzcl 11752 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  B  e.  ZZ )
5655adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  prod_ k  e.  y  B  e.  ZZ )
57 fprodmodd.c . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ZZ )
5834, 38, 57syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  ZZ )
5958adantllr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  ZZ )
6029, 59fprodzcl 11752 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  C  e.  ZZ )
6160adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  prod_ k  e.  y  C  e.  ZZ )
6247ad4ant13 513 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  [_ i  / 
k ]_ B  e.  ZZ )
6357ralrimiva 2567 . . . . . . 7  |-  ( ph  ->  A. k  e.  A  C  e.  ZZ )
64 rspcsbela 3140 . . . . . . 7  |-  ( ( i  e.  A  /\  A. k  e.  A  C  e.  ZZ )  ->  [_ i  /  k ]_ C  e.  ZZ )
6544, 63, 64syl2anr 290 . . . . . 6  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ C  e.  ZZ )
6665ad4ant13 513 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  [_ i  / 
k ]_ C  e.  ZZ )
67 fprodmodd.m . . . . . . 7  |-  ( ph  ->  M  e.  NN )
68 nnq 9698 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  QQ )
6967, 68syl 14 . . . . . 6  |-  ( ph  ->  M  e.  QQ )
7069ad3antrrr 492 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  M  e.  QQ )
7167nngt0d 9026 . . . . . 6  |-  ( ph  ->  0  <  M )
7271ad3antrrr 492 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  0  <  M )
73 simpr 110 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( prod_ k  e.  y  B  mod  M )  =  ( prod_
k  e.  y  C  mod  M ) )
74 fprodmodd.p . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  ( B  mod  M )  =  ( C  mod  M
) )
7574ralrimiva 2567 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  ( B  mod  M )  =  ( C  mod  M ) )
76 rspsbca 3069 . . . . . . . . 9  |-  ( ( i  e.  A  /\  A. k  e.  A  ( B  mod  M )  =  ( C  mod  M ) )  ->  [. i  /  k ]. ( B  mod  M )  =  ( C  mod  M
) )
7744, 75, 76syl2anr 290 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [. i  /  k ]. ( B  mod  M
)  =  ( C  mod  M ) )
78 vex 2763 . . . . . . . . 9  |-  i  e. 
_V
79 sbceqg 3096 . . . . . . . . 9  |-  ( i  e.  _V  ->  ( [. i  /  k ]. ( B  mod  M
)  =  ( C  mod  M )  <->  [_ i  / 
k ]_ ( B  mod  M )  =  [_ i  /  k ]_ ( C  mod  M ) ) )
8078, 79mp1i 10 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
( [. i  /  k ]. ( B  mod  M
)  =  ( C  mod  M )  <->  [_ i  / 
k ]_ ( B  mod  M )  =  [_ i  /  k ]_ ( C  mod  M ) ) )
8177, 80mpbid 147 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ ( B  mod  M
)  =  [_ i  /  k ]_ ( C  mod  M ) )
82 csbov1g 5958 . . . . . . . 8  |-  ( i  e.  _V  ->  [_ i  /  k ]_ ( B  mod  M )  =  ( [_ i  / 
k ]_ B  mod  M
) )
8382elv 2764 . . . . . . 7  |-  [_ i  /  k ]_ ( B  mod  M )  =  ( [_ i  / 
k ]_ B  mod  M
)
84 csbov1g 5958 . . . . . . . 8  |-  ( i  e.  _V  ->  [_ i  /  k ]_ ( C  mod  M )  =  ( [_ i  / 
k ]_ C  mod  M
) )
8584elv 2764 . . . . . . 7  |-  [_ i  /  k ]_ ( C  mod  M )  =  ( [_ i  / 
k ]_ C  mod  M
)
8681, 83, 853eqtr3g 2249 . . . . . 6  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
( [_ i  /  k ]_ B  mod  M )  =  ( [_ i  /  k ]_ C  mod  M ) )
8786ad4ant13 513 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( [_ i  /  k ]_ B  mod  M )  =  (
[_ i  /  k ]_ C  mod  M ) )
8856, 61, 62, 66, 70, 72, 73, 87modqmul12d 10449 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( ( prod_ k  e.  y  B  x.  [_ i  / 
k ]_ B )  mod 
M )  =  ( ( prod_ k  e.  y  C  x.  [_ i  /  k ]_ C
)  mod  M )
)
89 nfcsb1v 3113 . . . . . . . 8  |-  F/_ k [_ i  /  k ]_ C
9058zcnd 9440 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  CC )
9190adantllr 481 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  CC )
9265zcnd 9440 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ C  e.  CC )
9392adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  [_ i  /  k ]_ C  e.  CC )
94 csbeq1a 3089 . . . . . . . 8  |-  ( k  =  i  ->  C  =  [_ i  /  k ]_ C )
9589, 29, 30, 33, 91, 93, 94fprodunsn 11747 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { i } ) C  =  ( prod_ k  e.  y  C  x.  [_ i  /  k ]_ C
) )
9695oveq1d 5933 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
i } ) C  mod  M )  =  ( ( prod_ k  e.  y  C  x.  [_ i  /  k ]_ C )  mod  M
) )
9796eqcomd 2199 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( ( prod_
k  e.  y  C  x.  [_ i  / 
k ]_ C )  mod 
M )  =  (
prod_ k  e.  (
y  u.  { i } ) C  mod  M ) )
9897adantr 276 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( ( prod_ k  e.  y  C  x.  [_ i  / 
k ]_ C )  mod 
M )  =  (
prod_ k  e.  (
y  u.  { i } ) C  mod  M ) )
9953, 88, 983eqtrd 2230 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( prod_ k  e.  ( y  u. 
{ i } ) B  mod  M )  =  ( prod_ k  e.  ( y  u.  {
i } ) C  mod  M ) )
10099ex 115 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M )  ->  ( prod_ k  e.  ( y  u.  {
i } ) B  mod  M )  =  ( prod_ k  e.  ( y  u.  { i } ) C  mod  M ) ) )
101 fprodmodd.a . 2  |-  ( ph  ->  A  e.  Fin )
1025, 10, 15, 20, 27, 100, 101findcard2sd 6948 1  |-  ( ph  ->  ( prod_ k  e.  A  B  mod  M )  =  ( prod_ k  e.  A  C  mod  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760   [.wsbc 2985   [_csb 3080    \ cdif 3150    u. cun 3151    C_ wss 3153   (/)c0 3446   {csn 3618   class class class wbr 4029  (class class class)co 5918   Fincfn 6794   CCcc 7870   0cc0 7872   1c1 7873    x. cmul 7877    < clt 8054   NNcn 8982   ZZcz 9317   QQcq 9684    mod cmo 10393   prod_cprod 11693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-proddc 11694
This theorem is referenced by:  gausslemma2dlem5a  15181
  Copyright terms: Public domain W3C validator