ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodmodd Unicode version

Theorem fprodmodd 12147
Description: If all factors of two finite products are equal modulo  M, the products are equal modulo  M. (Contributed by AV, 7-Jul-2021.)
Hypotheses
Ref Expression
fprodmodd.a  |-  ( ph  ->  A  e.  Fin )
fprodmodd.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ZZ )
fprodmodd.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ZZ )
fprodmodd.m  |-  ( ph  ->  M  e.  NN )
fprodmodd.p  |-  ( (
ph  /\  k  e.  A )  ->  ( B  mod  M )  =  ( C  mod  M
) )
Assertion
Ref Expression
fprodmodd  |-  ( ph  ->  ( prod_ k  e.  A  B  mod  M )  =  ( prod_ k  e.  A  C  mod  M ) )
Distinct variable groups:    A, k    k, M    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem fprodmodd
Dummy variables  i  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 12059 . . . 4  |-  ( x  =  (/)  ->  prod_ k  e.  x  B  =  prod_ k  e.  (/)  B )
21oveq1d 6015 . . 3  |-  ( x  =  (/)  ->  ( prod_
k  e.  x  B  mod  M )  =  ( prod_ k  e.  (/)  B  mod  M ) )
3 prodeq1 12059 . . . 4  |-  ( x  =  (/)  ->  prod_ k  e.  x  C  =  prod_ k  e.  (/)  C )
43oveq1d 6015 . . 3  |-  ( x  =  (/)  ->  ( prod_
k  e.  x  C  mod  M )  =  ( prod_ k  e.  (/)  C  mod  M ) )
52, 4eqeq12d 2244 . 2  |-  ( x  =  (/)  ->  ( (
prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  (/)  B  mod  M
)  =  ( prod_
k  e.  (/)  C  mod  M ) ) )
6 prodeq1 12059 . . . 4  |-  ( x  =  y  ->  prod_ k  e.  x  B  = 
prod_ k  e.  y  B )
76oveq1d 6015 . . 3  |-  ( x  =  y  ->  ( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  y  B  mod  M ) )
8 prodeq1 12059 . . . 4  |-  ( x  =  y  ->  prod_ k  e.  x  C  = 
prod_ k  e.  y  C )
98oveq1d 6015 . . 3  |-  ( x  =  y  ->  ( prod_ k  e.  x  C  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )
107, 9eqeq12d 2244 . 2  |-  ( x  =  y  ->  (
( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  y  B  mod  M )  =  ( prod_
k  e.  y  C  mod  M ) ) )
11 prodeq1 12059 . . . 4  |-  ( x  =  ( y  u. 
{ i } )  ->  prod_ k  e.  x  B  =  prod_ k  e.  ( y  u.  {
i } ) B )
1211oveq1d 6015 . . 3  |-  ( x  =  ( y  u. 
{ i } )  ->  ( prod_ k  e.  x  B  mod  M )  =  ( prod_
k  e.  ( y  u.  { i } ) B  mod  M
) )
13 prodeq1 12059 . . . 4  |-  ( x  =  ( y  u. 
{ i } )  ->  prod_ k  e.  x  C  =  prod_ k  e.  ( y  u.  {
i } ) C )
1413oveq1d 6015 . . 3  |-  ( x  =  ( y  u. 
{ i } )  ->  ( prod_ k  e.  x  C  mod  M )  =  ( prod_
k  e.  ( y  u.  { i } ) C  mod  M
) )
1512, 14eqeq12d 2244 . 2  |-  ( x  =  ( y  u. 
{ i } )  ->  ( ( prod_
k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  ( y  u. 
{ i } ) B  mod  M )  =  ( prod_ k  e.  ( y  u.  {
i } ) C  mod  M ) ) )
16 prodeq1 12059 . . . 4  |-  ( x  =  A  ->  prod_ k  e.  x  B  = 
prod_ k  e.  A  B )
1716oveq1d 6015 . . 3  |-  ( x  =  A  ->  ( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  A  B  mod  M ) )
18 prodeq1 12059 . . . 4  |-  ( x  =  A  ->  prod_ k  e.  x  C  = 
prod_ k  e.  A  C )
1918oveq1d 6015 . . 3  |-  ( x  =  A  ->  ( prod_ k  e.  x  C  mod  M )  =  ( prod_ k  e.  A  C  mod  M ) )
2017, 19eqeq12d 2244 . 2  |-  ( x  =  A  ->  (
( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  A  B  mod  M )  =  ( prod_
k  e.  A  C  mod  M ) ) )
21 prod0 12091 . . . . 5  |-  prod_ k  e.  (/)  B  =  1
2221a1i 9 . . . 4  |-  ( ph  ->  prod_ k  e.  (/)  B  =  1 )
2322oveq1d 6015 . . 3  |-  ( ph  ->  ( prod_ k  e.  (/)  B  mod  M )  =  ( 1  mod  M
) )
24 prod0 12091 . . . . 5  |-  prod_ k  e.  (/)  C  =  1
2524eqcomi 2233 . . . 4  |-  1  =  prod_ k  e.  (/)  C
2625oveq1i 6010 . . 3  |-  ( 1  mod  M )  =  ( prod_ k  e.  (/)  C  mod  M )
2723, 26eqtrdi 2278 . 2  |-  ( ph  ->  ( prod_ k  e.  (/)  B  mod  M )  =  ( prod_ k  e.  (/)  C  mod  M ) )
28 nfcsb1v 3157 . . . . . . 7  |-  F/_ k [_ i  /  k ]_ B
29 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
30 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  i  e.  ( A  \  y ) )
31 simprr 531 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
i  e.  ( A 
\  y ) )
3231eldifbd 3209 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  -.  i  e.  y
)
3332adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  -.  i  e.  y )
34 simpll 527 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  ph )
35 ssel 3218 . . . . . . . . . . . . 13  |-  ( y 
C_  A  ->  (
k  e.  y  -> 
k  e.  A ) )
3635adantr 276 . . . . . . . . . . . 12  |-  ( ( y  C_  A  /\  i  e.  ( A  \  y ) )  -> 
( k  e.  y  ->  k  e.  A
) )
3736adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
( k  e.  y  ->  k  e.  A
) )
3837imp 124 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  A )
39 fprodmodd.b . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ZZ )
4034, 38, 39syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  ZZ )
4140zcnd 9566 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
4241adantllr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
43 eldifi 3326 . . . . . . . . . . 11  |-  ( i  e.  ( A  \ 
y )  ->  i  e.  A )
4443adantl 277 . . . . . . . . . 10  |-  ( ( y  C_  A  /\  i  e.  ( A  \  y ) )  -> 
i  e.  A )
4539ralrimiva 2603 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )
46 rspcsbela 3184 . . . . . . . . . 10  |-  ( ( i  e.  A  /\  A. k  e.  A  B  e.  ZZ )  ->  [_ i  /  k ]_ B  e.  ZZ )
4744, 45, 46syl2anr 290 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ B  e.  ZZ )
4847zcnd 9566 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ B  e.  CC )
4948adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  [_ i  /  k ]_ B  e.  CC )
50 csbeq1a 3133 . . . . . . 7  |-  ( k  =  i  ->  B  =  [_ i  /  k ]_ B )
5128, 29, 30, 33, 42, 49, 50fprodunsn 12110 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { i } ) B  =  ( prod_ k  e.  y  B  x.  [_ i  /  k ]_ B
) )
5251oveq1d 6015 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
i } ) B  mod  M )  =  ( ( prod_ k  e.  y  B  x.  [_ i  /  k ]_ B )  mod  M
) )
5352adantr 276 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( prod_ k  e.  ( y  u. 
{ i } ) B  mod  M )  =  ( ( prod_
k  e.  y  B  x.  [_ i  / 
k ]_ B )  mod 
M ) )
5440adantllr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  ZZ )
5529, 54fprodzcl 12115 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  B  e.  ZZ )
5655adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  prod_ k  e.  y  B  e.  ZZ )
57 fprodmodd.c . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ZZ )
5834, 38, 57syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  ZZ )
5958adantllr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  ZZ )
6029, 59fprodzcl 12115 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  C  e.  ZZ )
6160adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  prod_ k  e.  y  C  e.  ZZ )
6247ad4ant13 513 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  [_ i  / 
k ]_ B  e.  ZZ )
6357ralrimiva 2603 . . . . . . 7  |-  ( ph  ->  A. k  e.  A  C  e.  ZZ )
64 rspcsbela 3184 . . . . . . 7  |-  ( ( i  e.  A  /\  A. k  e.  A  C  e.  ZZ )  ->  [_ i  /  k ]_ C  e.  ZZ )
6544, 63, 64syl2anr 290 . . . . . 6  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ C  e.  ZZ )
6665ad4ant13 513 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  [_ i  / 
k ]_ C  e.  ZZ )
67 fprodmodd.m . . . . . . 7  |-  ( ph  ->  M  e.  NN )
68 nnq 9824 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  QQ )
6967, 68syl 14 . . . . . 6  |-  ( ph  ->  M  e.  QQ )
7069ad3antrrr 492 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  M  e.  QQ )
7167nngt0d 9150 . . . . . 6  |-  ( ph  ->  0  <  M )
7271ad3antrrr 492 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  0  <  M )
73 simpr 110 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( prod_ k  e.  y  B  mod  M )  =  ( prod_
k  e.  y  C  mod  M ) )
74 fprodmodd.p . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  ( B  mod  M )  =  ( C  mod  M
) )
7574ralrimiva 2603 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  ( B  mod  M )  =  ( C  mod  M ) )
76 rspsbca 3113 . . . . . . . . 9  |-  ( ( i  e.  A  /\  A. k  e.  A  ( B  mod  M )  =  ( C  mod  M ) )  ->  [. i  /  k ]. ( B  mod  M )  =  ( C  mod  M
) )
7744, 75, 76syl2anr 290 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [. i  /  k ]. ( B  mod  M
)  =  ( C  mod  M ) )
78 vex 2802 . . . . . . . . 9  |-  i  e. 
_V
79 sbceqg 3140 . . . . . . . . 9  |-  ( i  e.  _V  ->  ( [. i  /  k ]. ( B  mod  M
)  =  ( C  mod  M )  <->  [_ i  / 
k ]_ ( B  mod  M )  =  [_ i  /  k ]_ ( C  mod  M ) ) )
8078, 79mp1i 10 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
( [. i  /  k ]. ( B  mod  M
)  =  ( C  mod  M )  <->  [_ i  / 
k ]_ ( B  mod  M )  =  [_ i  /  k ]_ ( C  mod  M ) ) )
8177, 80mpbid 147 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ ( B  mod  M
)  =  [_ i  /  k ]_ ( C  mod  M ) )
82 csbov1g 6041 . . . . . . . 8  |-  ( i  e.  _V  ->  [_ i  /  k ]_ ( B  mod  M )  =  ( [_ i  / 
k ]_ B  mod  M
) )
8382elv 2803 . . . . . . 7  |-  [_ i  /  k ]_ ( B  mod  M )  =  ( [_ i  / 
k ]_ B  mod  M
)
84 csbov1g 6041 . . . . . . . 8  |-  ( i  e.  _V  ->  [_ i  /  k ]_ ( C  mod  M )  =  ( [_ i  / 
k ]_ C  mod  M
) )
8584elv 2803 . . . . . . 7  |-  [_ i  /  k ]_ ( C  mod  M )  =  ( [_ i  / 
k ]_ C  mod  M
)
8681, 83, 853eqtr3g 2285 . . . . . 6  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
( [_ i  /  k ]_ B  mod  M )  =  ( [_ i  /  k ]_ C  mod  M ) )
8786ad4ant13 513 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( [_ i  /  k ]_ B  mod  M )  =  (
[_ i  /  k ]_ C  mod  M ) )
8856, 61, 62, 66, 70, 72, 73, 87modqmul12d 10595 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( ( prod_ k  e.  y  B  x.  [_ i  / 
k ]_ B )  mod 
M )  =  ( ( prod_ k  e.  y  C  x.  [_ i  /  k ]_ C
)  mod  M )
)
89 nfcsb1v 3157 . . . . . . . 8  |-  F/_ k [_ i  /  k ]_ C
9058zcnd 9566 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  CC )
9190adantllr 481 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  CC )
9265zcnd 9566 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ C  e.  CC )
9392adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  [_ i  /  k ]_ C  e.  CC )
94 csbeq1a 3133 . . . . . . . 8  |-  ( k  =  i  ->  C  =  [_ i  /  k ]_ C )
9589, 29, 30, 33, 91, 93, 94fprodunsn 12110 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { i } ) C  =  ( prod_ k  e.  y  C  x.  [_ i  /  k ]_ C
) )
9695oveq1d 6015 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
i } ) C  mod  M )  =  ( ( prod_ k  e.  y  C  x.  [_ i  /  k ]_ C )  mod  M
) )
9796eqcomd 2235 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( ( prod_
k  e.  y  C  x.  [_ i  / 
k ]_ C )  mod 
M )  =  (
prod_ k  e.  (
y  u.  { i } ) C  mod  M ) )
9897adantr 276 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( ( prod_ k  e.  y  C  x.  [_ i  / 
k ]_ C )  mod 
M )  =  (
prod_ k  e.  (
y  u.  { i } ) C  mod  M ) )
9953, 88, 983eqtrd 2266 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( prod_ k  e.  ( y  u. 
{ i } ) B  mod  M )  =  ( prod_ k  e.  ( y  u.  {
i } ) C  mod  M ) )
10099ex 115 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M )  ->  ( prod_ k  e.  ( y  u.  {
i } ) B  mod  M )  =  ( prod_ k  e.  ( y  u.  { i } ) C  mod  M ) ) )
101 fprodmodd.a . 2  |-  ( ph  ->  A  e.  Fin )
1025, 10, 15, 20, 27, 100, 101findcard2sd 7050 1  |-  ( ph  ->  ( prod_ k  e.  A  B  mod  M )  =  ( prod_ k  e.  A  C  mod  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799   [.wsbc 3028   [_csb 3124    \ cdif 3194    u. cun 3195    C_ wss 3197   (/)c0 3491   {csn 3666   class class class wbr 4082  (class class class)co 6000   Fincfn 6885   CCcc 7993   0cc0 7995   1c1 7996    x. cmul 8000    < clt 8177   NNcn 9106   ZZcz 9442   QQcq 9810    mod cmo 10539   prod_cprod 12056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-isom 5326  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-irdg 6514  df-frec 6535  df-1o 6560  df-oadd 6564  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-ihash 10993  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-clim 11785  df-proddc 12057
This theorem is referenced by:  gausslemma2dlem5a  15738
  Copyright terms: Public domain W3C validator