ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodmodd Unicode version

Theorem fprodmodd 11520
Description: If all factors of two finite products are equal modulo  M, the products are equal modulo  M. (Contributed by AV, 7-Jul-2021.)
Hypotheses
Ref Expression
fprodmodd.a  |-  ( ph  ->  A  e.  Fin )
fprodmodd.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ZZ )
fprodmodd.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ZZ )
fprodmodd.m  |-  ( ph  ->  M  e.  NN )
fprodmodd.p  |-  ( (
ph  /\  k  e.  A )  ->  ( B  mod  M )  =  ( C  mod  M
) )
Assertion
Ref Expression
fprodmodd  |-  ( ph  ->  ( prod_ k  e.  A  B  mod  M )  =  ( prod_ k  e.  A  C  mod  M ) )
Distinct variable groups:    A, k    k, M    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem fprodmodd
Dummy variables  i  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11432 . . . 4  |-  ( x  =  (/)  ->  prod_ k  e.  x  B  =  prod_ k  e.  (/)  B )
21oveq1d 5833 . . 3  |-  ( x  =  (/)  ->  ( prod_
k  e.  x  B  mod  M )  =  ( prod_ k  e.  (/)  B  mod  M ) )
3 prodeq1 11432 . . . 4  |-  ( x  =  (/)  ->  prod_ k  e.  x  C  =  prod_ k  e.  (/)  C )
43oveq1d 5833 . . 3  |-  ( x  =  (/)  ->  ( prod_
k  e.  x  C  mod  M )  =  ( prod_ k  e.  (/)  C  mod  M ) )
52, 4eqeq12d 2172 . 2  |-  ( x  =  (/)  ->  ( (
prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  (/)  B  mod  M
)  =  ( prod_
k  e.  (/)  C  mod  M ) ) )
6 prodeq1 11432 . . . 4  |-  ( x  =  y  ->  prod_ k  e.  x  B  = 
prod_ k  e.  y  B )
76oveq1d 5833 . . 3  |-  ( x  =  y  ->  ( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  y  B  mod  M ) )
8 prodeq1 11432 . . . 4  |-  ( x  =  y  ->  prod_ k  e.  x  C  = 
prod_ k  e.  y  C )
98oveq1d 5833 . . 3  |-  ( x  =  y  ->  ( prod_ k  e.  x  C  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )
107, 9eqeq12d 2172 . 2  |-  ( x  =  y  ->  (
( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  y  B  mod  M )  =  ( prod_
k  e.  y  C  mod  M ) ) )
11 prodeq1 11432 . . . 4  |-  ( x  =  ( y  u. 
{ i } )  ->  prod_ k  e.  x  B  =  prod_ k  e.  ( y  u.  {
i } ) B )
1211oveq1d 5833 . . 3  |-  ( x  =  ( y  u. 
{ i } )  ->  ( prod_ k  e.  x  B  mod  M )  =  ( prod_
k  e.  ( y  u.  { i } ) B  mod  M
) )
13 prodeq1 11432 . . . 4  |-  ( x  =  ( y  u. 
{ i } )  ->  prod_ k  e.  x  C  =  prod_ k  e.  ( y  u.  {
i } ) C )
1413oveq1d 5833 . . 3  |-  ( x  =  ( y  u. 
{ i } )  ->  ( prod_ k  e.  x  C  mod  M )  =  ( prod_
k  e.  ( y  u.  { i } ) C  mod  M
) )
1512, 14eqeq12d 2172 . 2  |-  ( x  =  ( y  u. 
{ i } )  ->  ( ( prod_
k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  ( y  u. 
{ i } ) B  mod  M )  =  ( prod_ k  e.  ( y  u.  {
i } ) C  mod  M ) ) )
16 prodeq1 11432 . . . 4  |-  ( x  =  A  ->  prod_ k  e.  x  B  = 
prod_ k  e.  A  B )
1716oveq1d 5833 . . 3  |-  ( x  =  A  ->  ( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  A  B  mod  M ) )
18 prodeq1 11432 . . . 4  |-  ( x  =  A  ->  prod_ k  e.  x  C  = 
prod_ k  e.  A  C )
1918oveq1d 5833 . . 3  |-  ( x  =  A  ->  ( prod_ k  e.  x  C  mod  M )  =  ( prod_ k  e.  A  C  mod  M ) )
2017, 19eqeq12d 2172 . 2  |-  ( x  =  A  ->  (
( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  A  B  mod  M )  =  ( prod_
k  e.  A  C  mod  M ) ) )
21 prod0 11464 . . . . 5  |-  prod_ k  e.  (/)  B  =  1
2221a1i 9 . . . 4  |-  ( ph  ->  prod_ k  e.  (/)  B  =  1 )
2322oveq1d 5833 . . 3  |-  ( ph  ->  ( prod_ k  e.  (/)  B  mod  M )  =  ( 1  mod  M
) )
24 prod0 11464 . . . . 5  |-  prod_ k  e.  (/)  C  =  1
2524eqcomi 2161 . . . 4  |-  1  =  prod_ k  e.  (/)  C
2625oveq1i 5828 . . 3  |-  ( 1  mod  M )  =  ( prod_ k  e.  (/)  C  mod  M )
2723, 26eqtrdi 2206 . 2  |-  ( ph  ->  ( prod_ k  e.  (/)  B  mod  M )  =  ( prod_ k  e.  (/)  C  mod  M ) )
28 nfcsb1v 3064 . . . . . . 7  |-  F/_ k [_ i  /  k ]_ B
29 simplr 520 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
30 simprr 522 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  i  e.  ( A  \  y ) )
31 simprr 522 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
i  e.  ( A 
\  y ) )
3231eldifbd 3114 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  -.  i  e.  y
)
3332adantlr 469 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  -.  i  e.  y )
34 simpll 519 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  ph )
35 ssel 3122 . . . . . . . . . . . . 13  |-  ( y 
C_  A  ->  (
k  e.  y  -> 
k  e.  A ) )
3635adantr 274 . . . . . . . . . . . 12  |-  ( ( y  C_  A  /\  i  e.  ( A  \  y ) )  -> 
( k  e.  y  ->  k  e.  A
) )
3736adantl 275 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
( k  e.  y  ->  k  e.  A
) )
3837imp 123 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  A )
39 fprodmodd.b . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ZZ )
4034, 38, 39syl2anc 409 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  ZZ )
4140zcnd 9270 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
4241adantllr 473 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
43 eldifi 3229 . . . . . . . . . . 11  |-  ( i  e.  ( A  \ 
y )  ->  i  e.  A )
4443adantl 275 . . . . . . . . . 10  |-  ( ( y  C_  A  /\  i  e.  ( A  \  y ) )  -> 
i  e.  A )
4539ralrimiva 2530 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )
46 rspcsbela 3090 . . . . . . . . . 10  |-  ( ( i  e.  A  /\  A. k  e.  A  B  e.  ZZ )  ->  [_ i  /  k ]_ B  e.  ZZ )
4744, 45, 46syl2anr 288 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ B  e.  ZZ )
4847zcnd 9270 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ B  e.  CC )
4948adantlr 469 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  [_ i  /  k ]_ B  e.  CC )
50 csbeq1a 3040 . . . . . . 7  |-  ( k  =  i  ->  B  =  [_ i  /  k ]_ B )
5128, 29, 30, 33, 42, 49, 50fprodunsn 11483 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { i } ) B  =  ( prod_ k  e.  y  B  x.  [_ i  /  k ]_ B
) )
5251oveq1d 5833 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
i } ) B  mod  M )  =  ( ( prod_ k  e.  y  B  x.  [_ i  /  k ]_ B )  mod  M
) )
5352adantr 274 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( prod_ k  e.  ( y  u. 
{ i } ) B  mod  M )  =  ( ( prod_
k  e.  y  B  x.  [_ i  / 
k ]_ B )  mod 
M ) )
5440adantllr 473 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  ZZ )
5529, 54fprodzcl 11488 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  B  e.  ZZ )
5655adantr 274 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  prod_ k  e.  y  B  e.  ZZ )
57 fprodmodd.c . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ZZ )
5834, 38, 57syl2anc 409 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  ZZ )
5958adantllr 473 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  ZZ )
6029, 59fprodzcl 11488 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  C  e.  ZZ )
6160adantr 274 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  prod_ k  e.  y  C  e.  ZZ )
6247ad4ant13 505 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  [_ i  / 
k ]_ B  e.  ZZ )
6357ralrimiva 2530 . . . . . . 7  |-  ( ph  ->  A. k  e.  A  C  e.  ZZ )
64 rspcsbela 3090 . . . . . . 7  |-  ( ( i  e.  A  /\  A. k  e.  A  C  e.  ZZ )  ->  [_ i  /  k ]_ C  e.  ZZ )
6544, 63, 64syl2anr 288 . . . . . 6  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ C  e.  ZZ )
6665ad4ant13 505 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  [_ i  / 
k ]_ C  e.  ZZ )
67 fprodmodd.m . . . . . . 7  |-  ( ph  ->  M  e.  NN )
68 nnq 9524 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  QQ )
6967, 68syl 14 . . . . . 6  |-  ( ph  ->  M  e.  QQ )
7069ad3antrrr 484 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  M  e.  QQ )
7167nngt0d 8860 . . . . . 6  |-  ( ph  ->  0  <  M )
7271ad3antrrr 484 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  0  <  M )
73 simpr 109 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( prod_ k  e.  y  B  mod  M )  =  ( prod_
k  e.  y  C  mod  M ) )
74 fprodmodd.p . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  ( B  mod  M )  =  ( C  mod  M
) )
7574ralrimiva 2530 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  ( B  mod  M )  =  ( C  mod  M ) )
76 rspsbca 3020 . . . . . . . . 9  |-  ( ( i  e.  A  /\  A. k  e.  A  ( B  mod  M )  =  ( C  mod  M ) )  ->  [. i  /  k ]. ( B  mod  M )  =  ( C  mod  M
) )
7744, 75, 76syl2anr 288 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [. i  /  k ]. ( B  mod  M
)  =  ( C  mod  M ) )
78 vex 2715 . . . . . . . . 9  |-  i  e. 
_V
79 sbceqg 3047 . . . . . . . . 9  |-  ( i  e.  _V  ->  ( [. i  /  k ]. ( B  mod  M
)  =  ( C  mod  M )  <->  [_ i  / 
k ]_ ( B  mod  M )  =  [_ i  /  k ]_ ( C  mod  M ) ) )
8078, 79mp1i 10 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
( [. i  /  k ]. ( B  mod  M
)  =  ( C  mod  M )  <->  [_ i  / 
k ]_ ( B  mod  M )  =  [_ i  /  k ]_ ( C  mod  M ) ) )
8177, 80mpbid 146 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ ( B  mod  M
)  =  [_ i  /  k ]_ ( C  mod  M ) )
82 csbov1g 5855 . . . . . . . 8  |-  ( i  e.  _V  ->  [_ i  /  k ]_ ( B  mod  M )  =  ( [_ i  / 
k ]_ B  mod  M
) )
8382elv 2716 . . . . . . 7  |-  [_ i  /  k ]_ ( B  mod  M )  =  ( [_ i  / 
k ]_ B  mod  M
)
84 csbov1g 5855 . . . . . . . 8  |-  ( i  e.  _V  ->  [_ i  /  k ]_ ( C  mod  M )  =  ( [_ i  / 
k ]_ C  mod  M
) )
8584elv 2716 . . . . . . 7  |-  [_ i  /  k ]_ ( C  mod  M )  =  ( [_ i  / 
k ]_ C  mod  M
)
8681, 83, 853eqtr3g 2213 . . . . . 6  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
( [_ i  /  k ]_ B  mod  M )  =  ( [_ i  /  k ]_ C  mod  M ) )
8786ad4ant13 505 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( [_ i  /  k ]_ B  mod  M )  =  (
[_ i  /  k ]_ C  mod  M ) )
8856, 61, 62, 66, 70, 72, 73, 87modqmul12d 10259 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( ( prod_ k  e.  y  B  x.  [_ i  / 
k ]_ B )  mod 
M )  =  ( ( prod_ k  e.  y  C  x.  [_ i  /  k ]_ C
)  mod  M )
)
89 nfcsb1v 3064 . . . . . . . 8  |-  F/_ k [_ i  /  k ]_ C
9058zcnd 9270 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  CC )
9190adantllr 473 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  CC )
9265zcnd 9270 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ C  e.  CC )
9392adantlr 469 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  [_ i  /  k ]_ C  e.  CC )
94 csbeq1a 3040 . . . . . . . 8  |-  ( k  =  i  ->  C  =  [_ i  /  k ]_ C )
9589, 29, 30, 33, 91, 93, 94fprodunsn 11483 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { i } ) C  =  ( prod_ k  e.  y  C  x.  [_ i  /  k ]_ C
) )
9695oveq1d 5833 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
i } ) C  mod  M )  =  ( ( prod_ k  e.  y  C  x.  [_ i  /  k ]_ C )  mod  M
) )
9796eqcomd 2163 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( ( prod_
k  e.  y  C  x.  [_ i  / 
k ]_ C )  mod 
M )  =  (
prod_ k  e.  (
y  u.  { i } ) C  mod  M ) )
9897adantr 274 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( ( prod_ k  e.  y  C  x.  [_ i  / 
k ]_ C )  mod 
M )  =  (
prod_ k  e.  (
y  u.  { i } ) C  mod  M ) )
9953, 88, 983eqtrd 2194 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( prod_ k  e.  ( y  u. 
{ i } ) B  mod  M )  =  ( prod_ k  e.  ( y  u.  {
i } ) C  mod  M ) )
10099ex 114 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M )  ->  ( prod_ k  e.  ( y  u.  {
i } ) B  mod  M )  =  ( prod_ k  e.  ( y  u.  { i } ) C  mod  M ) ) )
101 fprodmodd.a . 2  |-  ( ph  ->  A  e.  Fin )
1025, 10, 15, 20, 27, 100, 101findcard2sd 6830 1  |-  ( ph  ->  ( prod_ k  e.  A  B  mod  M )  =  ( prod_ k  e.  A  C  mod  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   A.wral 2435   _Vcvv 2712   [.wsbc 2937   [_csb 3031    \ cdif 3099    u. cun 3100    C_ wss 3102   (/)c0 3394   {csn 3560   class class class wbr 3965  (class class class)co 5818   Fincfn 6678   CCcc 7713   0cc0 7715   1c1 7716    x. cmul 7720    < clt 7895   NNcn 8816   ZZcz 9150   QQcq 9510    mod cmo 10203   prod_cprod 11429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-iinf 4545  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-ltwlin 7828  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832  ax-pre-mulext 7833  ax-arch 7834  ax-caucvg 7835
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4252  df-po 4255  df-iso 4256  df-iord 4325  df-on 4327  df-ilim 4328  df-suc 4330  df-iom 4548  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-res 4595  df-ima 4596  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174  df-fv 5175  df-isom 5176  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-1st 6082  df-2nd 6083  df-recs 6246  df-irdg 6311  df-frec 6332  df-1o 6357  df-oadd 6361  df-er 6473  df-en 6679  df-dom 6680  df-fin 6681  df-pnf 7897  df-mnf 7898  df-xr 7899  df-ltxr 7900  df-le 7901  df-sub 8031  df-neg 8032  df-reap 8433  df-ap 8440  df-div 8529  df-inn 8817  df-2 8875  df-3 8876  df-4 8877  df-n0 9074  df-z 9151  df-uz 9423  df-q 9511  df-rp 9543  df-fz 9895  df-fzo 10024  df-fl 10151  df-mod 10204  df-seqfrec 10327  df-exp 10401  df-ihash 10632  df-cj 10724  df-re 10725  df-im 10726  df-rsqrt 10880  df-abs 10881  df-clim 11158  df-proddc 11430
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator