ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodmodd Unicode version

Theorem fprodmodd 11633
Description: If all factors of two finite products are equal modulo  M, the products are equal modulo  M. (Contributed by AV, 7-Jul-2021.)
Hypotheses
Ref Expression
fprodmodd.a  |-  ( ph  ->  A  e.  Fin )
fprodmodd.b  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ZZ )
fprodmodd.c  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ZZ )
fprodmodd.m  |-  ( ph  ->  M  e.  NN )
fprodmodd.p  |-  ( (
ph  /\  k  e.  A )  ->  ( B  mod  M )  =  ( C  mod  M
) )
Assertion
Ref Expression
fprodmodd  |-  ( ph  ->  ( prod_ k  e.  A  B  mod  M )  =  ( prod_ k  e.  A  C  mod  M ) )
Distinct variable groups:    A, k    k, M    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem fprodmodd
Dummy variables  i  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodeq1 11545 . . . 4  |-  ( x  =  (/)  ->  prod_ k  e.  x  B  =  prod_ k  e.  (/)  B )
21oveq1d 5884 . . 3  |-  ( x  =  (/)  ->  ( prod_
k  e.  x  B  mod  M )  =  ( prod_ k  e.  (/)  B  mod  M ) )
3 prodeq1 11545 . . . 4  |-  ( x  =  (/)  ->  prod_ k  e.  x  C  =  prod_ k  e.  (/)  C )
43oveq1d 5884 . . 3  |-  ( x  =  (/)  ->  ( prod_
k  e.  x  C  mod  M )  =  ( prod_ k  e.  (/)  C  mod  M ) )
52, 4eqeq12d 2192 . 2  |-  ( x  =  (/)  ->  ( (
prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  (/)  B  mod  M
)  =  ( prod_
k  e.  (/)  C  mod  M ) ) )
6 prodeq1 11545 . . . 4  |-  ( x  =  y  ->  prod_ k  e.  x  B  = 
prod_ k  e.  y  B )
76oveq1d 5884 . . 3  |-  ( x  =  y  ->  ( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  y  B  mod  M ) )
8 prodeq1 11545 . . . 4  |-  ( x  =  y  ->  prod_ k  e.  x  C  = 
prod_ k  e.  y  C )
98oveq1d 5884 . . 3  |-  ( x  =  y  ->  ( prod_ k  e.  x  C  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )
107, 9eqeq12d 2192 . 2  |-  ( x  =  y  ->  (
( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  y  B  mod  M )  =  ( prod_
k  e.  y  C  mod  M ) ) )
11 prodeq1 11545 . . . 4  |-  ( x  =  ( y  u. 
{ i } )  ->  prod_ k  e.  x  B  =  prod_ k  e.  ( y  u.  {
i } ) B )
1211oveq1d 5884 . . 3  |-  ( x  =  ( y  u. 
{ i } )  ->  ( prod_ k  e.  x  B  mod  M )  =  ( prod_
k  e.  ( y  u.  { i } ) B  mod  M
) )
13 prodeq1 11545 . . . 4  |-  ( x  =  ( y  u. 
{ i } )  ->  prod_ k  e.  x  C  =  prod_ k  e.  ( y  u.  {
i } ) C )
1413oveq1d 5884 . . 3  |-  ( x  =  ( y  u. 
{ i } )  ->  ( prod_ k  e.  x  C  mod  M )  =  ( prod_
k  e.  ( y  u.  { i } ) C  mod  M
) )
1512, 14eqeq12d 2192 . 2  |-  ( x  =  ( y  u. 
{ i } )  ->  ( ( prod_
k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  ( y  u. 
{ i } ) B  mod  M )  =  ( prod_ k  e.  ( y  u.  {
i } ) C  mod  M ) ) )
16 prodeq1 11545 . . . 4  |-  ( x  =  A  ->  prod_ k  e.  x  B  = 
prod_ k  e.  A  B )
1716oveq1d 5884 . . 3  |-  ( x  =  A  ->  ( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  A  B  mod  M ) )
18 prodeq1 11545 . . . 4  |-  ( x  =  A  ->  prod_ k  e.  x  C  = 
prod_ k  e.  A  C )
1918oveq1d 5884 . . 3  |-  ( x  =  A  ->  ( prod_ k  e.  x  C  mod  M )  =  ( prod_ k  e.  A  C  mod  M ) )
2017, 19eqeq12d 2192 . 2  |-  ( x  =  A  ->  (
( prod_ k  e.  x  B  mod  M )  =  ( prod_ k  e.  x  C  mod  M )  <->  ( prod_ k  e.  A  B  mod  M )  =  ( prod_
k  e.  A  C  mod  M ) ) )
21 prod0 11577 . . . . 5  |-  prod_ k  e.  (/)  B  =  1
2221a1i 9 . . . 4  |-  ( ph  ->  prod_ k  e.  (/)  B  =  1 )
2322oveq1d 5884 . . 3  |-  ( ph  ->  ( prod_ k  e.  (/)  B  mod  M )  =  ( 1  mod  M
) )
24 prod0 11577 . . . . 5  |-  prod_ k  e.  (/)  C  =  1
2524eqcomi 2181 . . . 4  |-  1  =  prod_ k  e.  (/)  C
2625oveq1i 5879 . . 3  |-  ( 1  mod  M )  =  ( prod_ k  e.  (/)  C  mod  M )
2723, 26eqtrdi 2226 . 2  |-  ( ph  ->  ( prod_ k  e.  (/)  B  mod  M )  =  ( prod_ k  e.  (/)  C  mod  M ) )
28 nfcsb1v 3090 . . . . . . 7  |-  F/_ k [_ i  /  k ]_ B
29 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
30 simprr 531 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  i  e.  ( A  \  y ) )
31 simprr 531 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
i  e.  ( A 
\  y ) )
3231eldifbd 3141 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  -.  i  e.  y
)
3332adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  -.  i  e.  y )
34 simpll 527 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  ph )
35 ssel 3149 . . . . . . . . . . . . 13  |-  ( y 
C_  A  ->  (
k  e.  y  -> 
k  e.  A ) )
3635adantr 276 . . . . . . . . . . . 12  |-  ( ( y  C_  A  /\  i  e.  ( A  \  y ) )  -> 
( k  e.  y  ->  k  e.  A
) )
3736adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
( k  e.  y  ->  k  e.  A
) )
3837imp 124 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  k  e.  A )
39 fprodmodd.b . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ZZ )
4034, 38, 39syl2anc 411 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  ZZ )
4140zcnd 9365 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
4241adantllr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  CC )
43 eldifi 3257 . . . . . . . . . . 11  |-  ( i  e.  ( A  \ 
y )  ->  i  e.  A )
4443adantl 277 . . . . . . . . . 10  |-  ( ( y  C_  A  /\  i  e.  ( A  \  y ) )  -> 
i  e.  A )
4539ralrimiva 2550 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  A  B  e.  ZZ )
46 rspcsbela 3116 . . . . . . . . . 10  |-  ( ( i  e.  A  /\  A. k  e.  A  B  e.  ZZ )  ->  [_ i  /  k ]_ B  e.  ZZ )
4744, 45, 46syl2anr 290 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ B  e.  ZZ )
4847zcnd 9365 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ B  e.  CC )
4948adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  [_ i  /  k ]_ B  e.  CC )
50 csbeq1a 3066 . . . . . . 7  |-  ( k  =  i  ->  B  =  [_ i  /  k ]_ B )
5128, 29, 30, 33, 42, 49, 50fprodunsn 11596 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { i } ) B  =  ( prod_ k  e.  y  B  x.  [_ i  /  k ]_ B
) )
5251oveq1d 5884 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
i } ) B  mod  M )  =  ( ( prod_ k  e.  y  B  x.  [_ i  /  k ]_ B )  mod  M
) )
5352adantr 276 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( prod_ k  e.  ( y  u. 
{ i } ) B  mod  M )  =  ( ( prod_
k  e.  y  B  x.  [_ i  / 
k ]_ B )  mod 
M ) )
5440adantllr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  B  e.  ZZ )
5529, 54fprodzcl 11601 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  B  e.  ZZ )
5655adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  prod_ k  e.  y  B  e.  ZZ )
57 fprodmodd.c . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  ZZ )
5834, 38, 57syl2anc 411 . . . . . . . 8  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  ZZ )
5958adantllr 481 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  ZZ )
6029, 59fprodzcl 11601 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  y  C  e.  ZZ )
6160adantr 276 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  prod_ k  e.  y  C  e.  ZZ )
6247ad4ant13 513 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  [_ i  / 
k ]_ B  e.  ZZ )
6357ralrimiva 2550 . . . . . . 7  |-  ( ph  ->  A. k  e.  A  C  e.  ZZ )
64 rspcsbela 3116 . . . . . . 7  |-  ( ( i  e.  A  /\  A. k  e.  A  C  e.  ZZ )  ->  [_ i  /  k ]_ C  e.  ZZ )
6544, 63, 64syl2anr 290 . . . . . 6  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ C  e.  ZZ )
6665ad4ant13 513 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  [_ i  / 
k ]_ C  e.  ZZ )
67 fprodmodd.m . . . . . . 7  |-  ( ph  ->  M  e.  NN )
68 nnq 9622 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  QQ )
6967, 68syl 14 . . . . . 6  |-  ( ph  ->  M  e.  QQ )
7069ad3antrrr 492 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  M  e.  QQ )
7167nngt0d 8952 . . . . . 6  |-  ( ph  ->  0  <  M )
7271ad3antrrr 492 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  0  <  M )
73 simpr 110 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( prod_ k  e.  y  B  mod  M )  =  ( prod_
k  e.  y  C  mod  M ) )
74 fprodmodd.p . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  ( B  mod  M )  =  ( C  mod  M
) )
7574ralrimiva 2550 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  ( B  mod  M )  =  ( C  mod  M ) )
76 rspsbca 3046 . . . . . . . . 9  |-  ( ( i  e.  A  /\  A. k  e.  A  ( B  mod  M )  =  ( C  mod  M ) )  ->  [. i  /  k ]. ( B  mod  M )  =  ( C  mod  M
) )
7744, 75, 76syl2anr 290 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [. i  /  k ]. ( B  mod  M
)  =  ( C  mod  M ) )
78 vex 2740 . . . . . . . . 9  |-  i  e. 
_V
79 sbceqg 3073 . . . . . . . . 9  |-  ( i  e.  _V  ->  ( [. i  /  k ]. ( B  mod  M
)  =  ( C  mod  M )  <->  [_ i  / 
k ]_ ( B  mod  M )  =  [_ i  /  k ]_ ( C  mod  M ) ) )
8078, 79mp1i 10 . . . . . . . 8  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
( [. i  /  k ]. ( B  mod  M
)  =  ( C  mod  M )  <->  [_ i  / 
k ]_ ( B  mod  M )  =  [_ i  /  k ]_ ( C  mod  M ) ) )
8177, 80mpbid 147 . . . . . . 7  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ ( B  mod  M
)  =  [_ i  /  k ]_ ( C  mod  M ) )
82 csbov1g 5909 . . . . . . . 8  |-  ( i  e.  _V  ->  [_ i  /  k ]_ ( B  mod  M )  =  ( [_ i  / 
k ]_ B  mod  M
) )
8382elv 2741 . . . . . . 7  |-  [_ i  /  k ]_ ( B  mod  M )  =  ( [_ i  / 
k ]_ B  mod  M
)
84 csbov1g 5909 . . . . . . . 8  |-  ( i  e.  _V  ->  [_ i  /  k ]_ ( C  mod  M )  =  ( [_ i  / 
k ]_ C  mod  M
) )
8584elv 2741 . . . . . . 7  |-  [_ i  /  k ]_ ( C  mod  M )  =  ( [_ i  / 
k ]_ C  mod  M
)
8681, 83, 853eqtr3g 2233 . . . . . 6  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  -> 
( [_ i  /  k ]_ B  mod  M )  =  ( [_ i  /  k ]_ C  mod  M ) )
8786ad4ant13 513 . . . . 5  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( [_ i  /  k ]_ B  mod  M )  =  (
[_ i  /  k ]_ C  mod  M ) )
8856, 61, 62, 66, 70, 72, 73, 87modqmul12d 10364 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( ( prod_ k  e.  y  B  x.  [_ i  / 
k ]_ B )  mod 
M )  =  ( ( prod_ k  e.  y  C  x.  [_ i  /  k ]_ C
)  mod  M )
)
89 nfcsb1v 3090 . . . . . . . 8  |-  F/_ k [_ i  /  k ]_ C
9058zcnd 9365 . . . . . . . . 9  |-  ( ( ( ph  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  CC )
9190adantllr 481 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  k  e.  y )  ->  C  e.  CC )
9265zcnd 9365 . . . . . . . . 9  |-  ( (
ph  /\  ( y  C_  A  /\  i  e.  ( A  \  y
) ) )  ->  [_ i  /  k ]_ C  e.  CC )
9392adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  [_ i  /  k ]_ C  e.  CC )
94 csbeq1a 3066 . . . . . . . 8  |-  ( k  =  i  ->  C  =  [_ i  /  k ]_ C )
9589, 29, 30, 33, 91, 93, 94fprodunsn 11596 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  prod_ k  e.  ( y  u.  { i } ) C  =  ( prod_ k  e.  y  C  x.  [_ i  /  k ]_ C
) )
9695oveq1d 5884 . . . . . 6  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( prod_ k  e.  ( y  u.  {
i } ) C  mod  M )  =  ( ( prod_ k  e.  y  C  x.  [_ i  /  k ]_ C )  mod  M
) )
9796eqcomd 2183 . . . . 5  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( ( prod_
k  e.  y  C  x.  [_ i  / 
k ]_ C )  mod 
M )  =  (
prod_ k  e.  (
y  u.  { i } ) C  mod  M ) )
9897adantr 276 . . . 4  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( ( prod_ k  e.  y  C  x.  [_ i  / 
k ]_ C )  mod 
M )  =  (
prod_ k  e.  (
y  u.  { i } ) C  mod  M ) )
9953, 88, 983eqtrd 2214 . . 3  |-  ( ( ( ( ph  /\  y  e.  Fin )  /\  ( y  C_  A  /\  i  e.  ( A  \  y ) ) )  /\  ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M ) )  ->  ( prod_ k  e.  ( y  u. 
{ i } ) B  mod  M )  =  ( prod_ k  e.  ( y  u.  {
i } ) C  mod  M ) )
10099ex 115 . 2  |-  ( ( ( ph  /\  y  e.  Fin )  /\  (
y  C_  A  /\  i  e.  ( A  \  y ) ) )  ->  ( ( prod_
k  e.  y  B  mod  M )  =  ( prod_ k  e.  y  C  mod  M )  ->  ( prod_ k  e.  ( y  u.  {
i } ) B  mod  M )  =  ( prod_ k  e.  ( y  u.  { i } ) C  mod  M ) ) )
101 fprodmodd.a . 2  |-  ( ph  ->  A  e.  Fin )
1025, 10, 15, 20, 27, 100, 101findcard2sd 6886 1  |-  ( ph  ->  ( prod_ k  e.  A  B  mod  M )  =  ( prod_ k  e.  A  C  mod  M ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2737   [.wsbc 2962   [_csb 3057    \ cdif 3126    u. cun 3127    C_ wss 3129   (/)c0 3422   {csn 3591   class class class wbr 4000  (class class class)co 5869   Fincfn 6734   CCcc 7800   0cc0 7802   1c1 7803    x. cmul 7807    < clt 7982   NNcn 8908   ZZcz 9242   QQcq 9608    mod cmo 10308   prod_cprod 11542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator