ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb6a Unicode version

Theorem sb6a 2016
Description: Equivalence for substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sb6a  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  [ x  /  y ] ph ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem sb6a
StepHypRef Expression
1 sb6 1910 . 2  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
2 sbequ12 1794 . . . . 5  |-  ( y  =  x  ->  ( ph 
<->  [ x  /  y ] ph ) )
32equcoms 1731 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  [ x  /  y ] ph ) )
43pm5.74i 180 . . 3  |-  ( ( x  =  y  ->  ph )  <->  ( x  =  y  ->  [ x  /  y ] ph ) )
54albii 1493 . 2  |-  ( A. x ( x  =  y  ->  ph )  <->  A. x
( x  =  y  ->  [ x  / 
y ] ph )
)
61, 5bitri 184 1  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  [ x  /  y ] ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1371   [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557
This theorem depends on definitions:  df-bi 117  df-sb 1786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator