![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sb6a | GIF version |
Description: Equivalence for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sb6a | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 1886 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | sbequ12 1771 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
3 | 2 | equcoms 1708 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) |
4 | 3 | pm5.74i 180 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) |
5 | 4 | albii 1470 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) |
6 | 1, 5 | bitri 184 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-sb 1763 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |