ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb6a GIF version

Theorem sb6a 1988
Description: Equivalence for substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sb6a ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb6a
StepHypRef Expression
1 sb6 1886 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
2 sbequ12 1771 . . . . 5 (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑))
32equcoms 1708 . . . 4 (𝑥 = 𝑦 → (𝜑 ↔ [𝑥 / 𝑦]𝜑))
43pm5.74i 180 . . 3 ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))
54albii 1470 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))
61, 5bitri 184 1 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1351  [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-sb 1763
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator