ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb6a GIF version

Theorem sb6a 1976
Description: Equivalence for substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sb6a ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sb6a
StepHypRef Expression
1 sb6 1874 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
2 sbequ12 1759 . . . . 5 (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑))
32equcoms 1696 . . . 4 (𝑥 = 𝑦 → (𝜑 ↔ [𝑥 / 𝑦]𝜑))
43pm5.74i 179 . . 3 ((𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))
54albii 1458 . 2 (∀𝑥(𝑥 = 𝑦𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))
61, 5bitri 183 1 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341  [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator