Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sb6a | GIF version |
Description: Equivalence for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sb6a | ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 1874 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | sbequ12 1759 | . . . . 5 ⊢ (𝑦 = 𝑥 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) | |
3 | 2 | equcoms 1696 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑥 / 𝑦]𝜑)) |
4 | 3 | pm5.74i 179 | . . 3 ⊢ ((𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) |
5 | 4 | albii 1458 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) |
6 | 1, 5 | bitri 183 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1341 [wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |