ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcom2 Unicode version

Theorem sbcom2 1967
Description: Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof modified to be intuitionistic by Jim Kingdon, 19-Feb-2018.)
Assertion
Ref Expression
sbcom2  |-  ( [ w  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ w  /  z ] ph )
Distinct variable groups:    x, z    x, w    y, z
Allowed substitution hints:    ph( x, y, z, w)

Proof of Theorem sbcom2
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 sbcom2v2 1966 . . . 4  |-  ( [ v  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ v  /  z ] ph )
21sbbii 1745 . . 3  |-  ( [ w  /  v ] [ v  /  z ] [ y  /  x ] ph  <->  [ w  /  v ] [ y  /  x ] [ v  /  z ] ph )
3 sbcom2v2 1966 . . 3  |-  ( [ w  /  v ] [ y  /  x ] [ v  /  z ] ph  <->  [ y  /  x ] [ w  /  v ] [ v  /  z ] ph )
42, 3bitri 183 . 2  |-  ( [ w  /  v ] [ v  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ w  /  v ] [ v  /  z ] ph )
5 ax-17 1506 . . 3  |-  ( [ y  /  x ] ph  ->  A. v [ y  /  x ] ph )
65sbco2vh 1925 . 2  |-  ( [ w  /  v ] [ v  /  z ] [ y  /  x ] ph  <->  [ w  /  z ] [ y  /  x ] ph )
7 ax-17 1506 . . . 4  |-  ( ph  ->  A. v ph )
87sbco2vh 1925 . . 3  |-  ( [ w  /  v ] [ v  /  z ] ph  <->  [ w  /  z ] ph )
98sbbii 1745 . 2  |-  ( [ y  /  x ] [ w  /  v ] [ v  /  z ] ph  <->  [ y  /  x ] [ w  /  z ] ph )
104, 6, 93bitr3i 209 1  |-  ( [ w  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ w  /  z ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   [wsb 1742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743
This theorem is referenced by:  2sb5rf  1969  2sb6rf  1970  sbco4lem  1986  sbco4  1987  sbmo  2065  cnvopab  4986
  Copyright terms: Public domain W3C validator