ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcom2 Unicode version

Theorem sbcom2 2014
Description: Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof modified to be intuitionistic by Jim Kingdon, 19-Feb-2018.)
Assertion
Ref Expression
sbcom2  |-  ( [ w  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ w  /  z ] ph )
Distinct variable groups:    x, z    x, w    y, z
Allowed substitution hints:    ph( x, y, z, w)

Proof of Theorem sbcom2
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 sbcom2v2 2013 . . . 4  |-  ( [ v  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ v  /  z ] ph )
21sbbii 1787 . . 3  |-  ( [ w  /  v ] [ v  /  z ] [ y  /  x ] ph  <->  [ w  /  v ] [ y  /  x ] [ v  /  z ] ph )
3 sbcom2v2 2013 . . 3  |-  ( [ w  /  v ] [ y  /  x ] [ v  /  z ] ph  <->  [ y  /  x ] [ w  /  v ] [ v  /  z ] ph )
42, 3bitri 184 . 2  |-  ( [ w  /  v ] [ v  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ w  /  v ] [ v  /  z ] ph )
5 ax-17 1548 . . 3  |-  ( [ y  /  x ] ph  ->  A. v [ y  /  x ] ph )
65sbco2vh 1972 . 2  |-  ( [ w  /  v ] [ v  /  z ] [ y  /  x ] ph  <->  [ w  /  z ] [ y  /  x ] ph )
7 ax-17 1548 . . . 4  |-  ( ph  ->  A. v ph )
87sbco2vh 1972 . . 3  |-  ( [ w  /  v ] [ v  /  z ] ph  <->  [ w  /  z ] ph )
98sbbii 1787 . 2  |-  ( [ y  /  x ] [ w  /  v ] [ v  /  z ] ph  <->  [ y  /  x ] [ w  /  z ] ph )
104, 6, 93bitr3i 210 1  |-  ( [ w  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ w  /  z ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557
This theorem depends on definitions:  df-bi 117  df-nf 1483  df-sb 1785
This theorem is referenced by:  2sb5rf  2016  2sb6rf  2017  sbco4lem  2033  sbco4  2034  sbmo  2112  cnvopab  5083
  Copyright terms: Public domain W3C validator