ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbc5 Unicode version

Theorem sbc5 2936
Description: An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.)
Assertion
Ref Expression
sbc5  |-  ( [. A  /  x ]. ph  <->  E. x
( x  =  A  /\  ph ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem sbc5
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 sbcex 2921 . 2  |-  ( [. A  /  x ]. ph  ->  A  e.  _V )
2 exsimpl 1597 . . 3  |-  ( E. x ( x  =  A  /\  ph )  ->  E. x  x  =  A )
3 isset 2695 . . 3  |-  ( A  e.  _V  <->  E. x  x  =  A )
42, 3sylibr 133 . 2  |-  ( E. x ( x  =  A  /\  ph )  ->  A  e.  _V )
5 dfsbcq2 2916 . . 3  |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ]. ph ) )
6 eqeq2 2150 . . . . 5  |-  ( y  =  A  ->  (
x  =  y  <->  x  =  A ) )
76anbi1d 461 . . . 4  |-  ( y  =  A  ->  (
( x  =  y  /\  ph )  <->  ( x  =  A  /\  ph )
) )
87exbidv 1798 . . 3  |-  ( y  =  A  ->  ( E. x ( x  =  y  /\  ph )  <->  E. x ( x  =  A  /\  ph )
) )
9 sb5 1860 . . 3  |-  ( [ y  /  x ] ph 
<->  E. x ( x  =  y  /\  ph ) )
105, 8, 9vtoclbg 2750 . 2  |-  ( A  e.  _V  ->  ( [. A  /  x ]. ph  <->  E. x ( x  =  A  /\  ph ) ) )
111, 4, 10pm5.21nii 694 1  |-  ( [. A  /  x ]. ph  <->  E. x
( x  =  A  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1332   E.wex 1469    e. wcel 1481   [wsb 1736   _Vcvv 2689   [.wsbc 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-sbc 2914
This theorem is referenced by:  sbc6g  2937  sbc7  2939  sbciegft  2943  sbccomlem  2987  csb2  3009  rexsns  3570
  Copyright terms: Public domain W3C validator