ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcco Unicode version

Theorem sbcco 3027
Description: A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbcco  |-  ( [. A  /  y ]. [. y  /  x ]. ph  <->  [. A  /  x ]. ph )
Distinct variable group:    ph, y
Allowed substitution hints:    ph( x)    A( x, y)

Proof of Theorem sbcco
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbcex 3014 . 2  |-  ( [. A  /  y ]. [. y  /  x ]. ph  ->  A  e.  _V )
2 sbcex 3014 . 2  |-  ( [. A  /  x ]. ph  ->  A  e.  _V )
3 dfsbcq 3007 . . 3  |-  ( z  =  A  ->  ( [. z  /  y ]. [. y  /  x ]. ph  <->  [. A  /  y ]. [. y  /  x ]. ph ) )
4 dfsbcq 3007 . . 3  |-  ( z  =  A  ->  ( [. z  /  x ]. ph  <->  [. A  /  x ]. ph ) )
5 sbsbc 3009 . . . . . 6  |-  ( [ y  /  x ] ph 
<-> 
[. y  /  x ]. ph )
65sbbii 1789 . . . . 5  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [. y  /  x ]. ph )
7 nfv 1552 . . . . . 6  |-  F/ y
ph
87sbco2 1994 . . . . 5  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] ph )
9 sbsbc 3009 . . . . 5  |-  ( [ z  /  y ]
[. y  /  x ]. ph  <->  [. z  /  y ]. [. y  /  x ]. ph )
106, 8, 93bitr3ri 211 . . . 4  |-  ( [. z  /  y ]. [. y  /  x ]. ph  <->  [ z  /  x ] ph )
11 sbsbc 3009 . . . 4  |-  ( [ z  /  x ] ph 
<-> 
[. z  /  x ]. ph )
1210, 11bitri 184 . . 3  |-  ( [. z  /  y ]. [. y  /  x ]. ph  <->  [. z  /  x ]. ph )
133, 4, 12vtoclbg 2839 . 2  |-  ( A  e.  _V  ->  ( [. A  /  y ]. [. y  /  x ]. ph  <->  [. A  /  x ]. ph ) )
141, 2, 13pm5.21nii 706 1  |-  ( [. A  /  y ]. [. y  /  x ]. ph  <->  [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1786    e. wcel 2178   _Vcvv 2776   [.wsbc 3005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-sbc 3006
This theorem is referenced by:  sbc7  3032  sbccom  3081  sbcralt  3082  sbcrext  3083  csbco  3111
  Copyright terms: Public domain W3C validator