ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcco Unicode version

Theorem sbcco 3050
Description: A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Assertion
Ref Expression
sbcco  |-  ( [. A  /  y ]. [. y  /  x ]. ph  <->  [. A  /  x ]. ph )
Distinct variable group:    ph, y
Allowed substitution hints:    ph( x)    A( x, y)

Proof of Theorem sbcco
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 sbcex 3037 . 2  |-  ( [. A  /  y ]. [. y  /  x ]. ph  ->  A  e.  _V )
2 sbcex 3037 . 2  |-  ( [. A  /  x ]. ph  ->  A  e.  _V )
3 dfsbcq 3030 . . 3  |-  ( z  =  A  ->  ( [. z  /  y ]. [. y  /  x ]. ph  <->  [. A  /  y ]. [. y  /  x ]. ph ) )
4 dfsbcq 3030 . . 3  |-  ( z  =  A  ->  ( [. z  /  x ]. ph  <->  [. A  /  x ]. ph ) )
5 sbsbc 3032 . . . . . 6  |-  ( [ y  /  x ] ph 
<-> 
[. y  /  x ]. ph )
65sbbii 1811 . . . . 5  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [. y  /  x ]. ph )
7 nfv 1574 . . . . . 6  |-  F/ y
ph
87sbco2 2016 . . . . 5  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] ph )
9 sbsbc 3032 . . . . 5  |-  ( [ z  /  y ]
[. y  /  x ]. ph  <->  [. z  /  y ]. [. y  /  x ]. ph )
106, 8, 93bitr3ri 211 . . . 4  |-  ( [. z  /  y ]. [. y  /  x ]. ph  <->  [ z  /  x ] ph )
11 sbsbc 3032 . . . 4  |-  ( [ z  /  x ] ph 
<-> 
[. z  /  x ]. ph )
1210, 11bitri 184 . . 3  |-  ( [. z  /  y ]. [. y  /  x ]. ph  <->  [. z  /  x ]. ph )
133, 4, 12vtoclbg 2862 . 2  |-  ( A  e.  _V  ->  ( [. A  /  y ]. [. y  /  x ]. ph  <->  [. A  /  x ]. ph ) )
141, 2, 13pm5.21nii 709 1  |-  ( [. A  /  y ]. [. y  /  x ]. ph  <->  [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1808    e. wcel 2200   _Vcvv 2799   [.wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029
This theorem is referenced by:  sbc7  3055  sbccom  3104  sbcralt  3105  sbcrext  3106  csbco  3134
  Copyright terms: Public domain W3C validator