ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcco2 Unicode version

Theorem sbcco2 2987
Description: A composition law for class substitution. Importantly,  x may occur free in the class expression substituted for  A. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypothesis
Ref Expression
sbcco2.1  |-  ( x  =  y  ->  A  =  B )
Assertion
Ref Expression
sbcco2  |-  ( [. x  /  y ]. [. B  /  x ]. ph  <->  [. A  /  x ]. ph )
Distinct variable groups:    x, y    ph, y    y, A
Allowed substitution hints:    ph( x)    A( x)    B( x, y)

Proof of Theorem sbcco2
StepHypRef Expression
1 sbsbc 2968 . 2  |-  ( [ x  /  y ]
[. B  /  x ]. ph  <->  [. x  /  y ]. [. B  /  x ]. ph )
2 nfv 1528 . . 3  |-  F/ y
[. A  /  x ]. ph
3 sbcco2.1 . . . . 5  |-  ( x  =  y  ->  A  =  B )
43equcoms 1708 . . . 4  |-  ( y  =  x  ->  A  =  B )
5 dfsbcq 2966 . . . . 5  |-  ( A  =  B  ->  ( [. A  /  x ]. ph  <->  [. B  /  x ]. ph ) )
65bicomd 141 . . . 4  |-  ( A  =  B  ->  ( [. B  /  x ]. ph  <->  [. A  /  x ]. ph ) )
74, 6syl 14 . . 3  |-  ( y  =  x  ->  ( [. B  /  x ]. ph  <->  [. A  /  x ]. ph ) )
82, 7sbie 1791 . 2  |-  ( [ x  /  y ]
[. B  /  x ]. ph  <->  [. A  /  x ]. ph )
91, 8bitr3i 186 1  |-  ( [. x  /  y ]. [. B  /  x ]. ph  <->  [. A  /  x ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1353   [wsb 1762   [.wsbc 2964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-sbc 2965
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator