| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbcco2 | GIF version | ||
| Description: A composition law for class substitution. Importantly, 𝑥 may occur free in the class expression substituted for 𝐴. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbcco2.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sbcco2 | ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbsbc 2993 | . 2 ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝑥 / 𝑦][𝐵 / 𝑥]𝜑) | |
| 2 | nfv 1542 | . . 3 ⊢ Ⅎ𝑦[𝐴 / 𝑥]𝜑 | |
| 3 | sbcco2.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 4 | 3 | equcoms 1722 | . . . 4 ⊢ (𝑦 = 𝑥 → 𝐴 = 𝐵) |
| 5 | dfsbcq 2991 | . . . . 5 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) | |
| 6 | 5 | bicomd 141 | . . . 4 ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 7 | 4, 6 | syl 14 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 8 | 2, 7 | sbie 1805 | . 2 ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
| 9 | 1, 8 | bitr3i 186 | 1 ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 [wsb 1776 [wsbc 2989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-sbc 2990 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |