![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbcco2 | GIF version |
Description: A composition law for class substitution. Importantly, 𝑥 may occur free in the class expression substituted for 𝐴. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
sbcco2.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sbcco2 | ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbsbc 2990 | . 2 ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝑥 / 𝑦][𝐵 / 𝑥]𝜑) | |
2 | nfv 1539 | . . 3 ⊢ Ⅎ𝑦[𝐴 / 𝑥]𝜑 | |
3 | sbcco2.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
4 | 3 | equcoms 1719 | . . . 4 ⊢ (𝑦 = 𝑥 → 𝐴 = 𝐵) |
5 | dfsbcq 2988 | . . . . 5 ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 ↔ [𝐵 / 𝑥]𝜑)) | |
6 | 5 | bicomd 141 | . . . 4 ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
7 | 4, 6 | syl 14 | . . 3 ⊢ (𝑦 = 𝑥 → ([𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
8 | 2, 7 | sbie 1802 | . 2 ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
9 | 1, 8 | bitr3i 186 | 1 ⊢ ([𝑥 / 𝑦][𝐵 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 [wsb 1773 [wsbc 2986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-sbc 2987 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |