![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfsbcq | Unicode version |
Description: This theorem, which is
similar to Theorem 6.7 of [Quine] p. 42 and holds
under both our definition and Quine's, provides us with a weak definition
of the proper substitution of a class for a set. Since our df-sbc 2863 does
not result in the same behavior as Quine's for proper classes, if we
wished to avoid conflict with Quine's definition we could start with this
theorem and dfsbcq2 2865 instead of df-sbc 2863. (dfsbcq2 2865 is needed because
unlike Quine we do not overload the df-sb 1704 syntax.) As a consequence of
these theorems, we can derive sbc8g 2869, which is a weaker version of
df-sbc 2863 that leaves substitution undefined when ![]() However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 2869, so we will allow direct use of df-sbc 2863. Proper substiution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2162 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-sbc 2863 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df-sbc 2863 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3bitr4g 222 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1391 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-4 1455 ax-17 1474 ax-ial 1482 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-cleq 2093 df-clel 2096 df-sbc 2863 |
This theorem is referenced by: sbceq1d 2867 sbc8g 2869 spsbc 2873 sbcco 2883 sbcco2 2884 sbcie2g 2894 elrabsf 2899 eqsbc3 2900 csbeq1 2958 sbcnestgf 3001 sbcco3g 3007 cbvralcsf 3012 cbvrexcsf 3013 findes 4455 ralrnmpt 5494 rexrnmpt 5495 findcard2 6712 findcard2s 6713 ac6sfi 6721 nn1suc 8597 uzind4s2 9236 indstr 9238 bezoutlemmain 11479 prmind2 11594 |
Copyright terms: Public domain | W3C validator |