![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfsbcq | Unicode version |
Description: This theorem, which is
similar to Theorem 6.7 of [Quine] p. 42 and holds
under both our definition and Quine's, provides us with a weak definition
of the proper substitution of a class for a set. Since our df-sbc 2965 does
not result in the same behavior as Quine's for proper classes, if we
wished to avoid conflict with Quine's definition we could start with this
theorem and dfsbcq2 2967 instead of df-sbc 2965. (dfsbcq2 2967 is needed because
unlike Quine we do not overload the df-sb 1763 syntax.) As a consequence of
these theorems, we can derive sbc8g 2972, which is a weaker version of
df-sbc 2965 that leaves substitution undefined when ![]() However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 2972, so we will allow direct use of df-sbc 2965. Proper substiution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2240 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-sbc 2965 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df-sbc 2965 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3bitr4g 223 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-4 1510 ax-17 1526 ax-ial 1534 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-cleq 2170 df-clel 2173 df-sbc 2965 |
This theorem is referenced by: sbceq1d 2969 sbc8g 2972 spsbc 2976 sbcco 2986 sbcco2 2987 sbcie2g 2998 elrabsf 3003 eqsbc1 3004 csbeq1 3062 sbcnestgf 3110 sbcco3g 3116 cbvralcsf 3121 cbvrexcsf 3122 findes 4604 ralrnmpt 5660 rexrnmpt 5661 findcard2 6891 findcard2s 6892 ac6sfi 6900 nn1suc 8940 uzind4s2 9593 indstr 9595 bezoutlemmain 12001 prmind2 12122 |
Copyright terms: Public domain | W3C validator |