![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfsbcq | Unicode version |
Description: This theorem, which is
similar to Theorem 6.7 of [Quine] p. 42 and holds
under both our definition and Quine's, provides us with a weak definition
of the proper substitution of a class for a set. Since our df-sbc 2987 does
not result in the same behavior as Quine's for proper classes, if we
wished to avoid conflict with Quine's definition we could start with this
theorem and dfsbcq2 2989 instead of df-sbc 2987. (dfsbcq2 2989 is needed because
unlike Quine we do not overload the df-sb 1774 syntax.) As a consequence of
these theorems, we can derive sbc8g 2994, which is a weaker version of
df-sbc 2987 that leaves substitution undefined when ![]() However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 2994, so we will allow direct use of df-sbc 2987. Proper substiution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
dfsbcq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2256 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-sbc 2987 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df-sbc 2987 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3bitr4g 223 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 df-sbc 2987 |
This theorem is referenced by: sbceq1d 2991 sbc8g 2994 spsbc 2998 sbcco 3008 sbcco2 3009 sbcie2g 3020 elrabsf 3025 eqsbc1 3026 csbeq1 3084 sbcnestgf 3133 sbcco3g 3139 cbvralcsf 3144 cbvrexcsf 3145 findes 4636 ralrnmpt 5701 rexrnmpt 5702 uchoice 6192 findcard2 6947 findcard2s 6948 ac6sfi 6956 nn1suc 9003 uzind4s2 9659 indstr 9661 bezoutlemmain 12138 prmind2 12261 |
Copyright terms: Public domain | W3C validator |