ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel21v Unicode version

Theorem sbcel21v 3015
Description: Class substitution into a membership relation. One direction of sbcel2gv 3014 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcel21v  |-  ( [. B  /  x ]. A  e.  x  ->  A  e.  B )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem sbcel21v
StepHypRef Expression
1 sbcex 2959 . 2  |-  ( [. B  /  x ]. A  e.  x  ->  B  e. 
_V )
2 sbcel2gv 3014 . . 3  |-  ( B  e.  _V  ->  ( [. B  /  x ]. A  e.  x  <->  A  e.  B ) )
32biimpd 143 . 2  |-  ( B  e.  _V  ->  ( [. B  /  x ]. A  e.  x  ->  A  e.  B ) )
41, 3mpcom 36 1  |-  ( [. B  /  x ]. A  e.  x  ->  A  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   _Vcvv 2726   [.wsbc 2951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator