ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel2gv Unicode version

Theorem sbcel2gv 3038
Description: Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
sbcel2gv  |-  ( B  e.  V  ->  ( [. B  /  x ]. A  e.  x  <->  A  e.  B ) )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    V( x)

Proof of Theorem sbcel2gv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eleq2 2251 . 2  |-  ( x  =  y  ->  ( A  e.  x  <->  A  e.  y ) )
2 eleq2 2251 . 2  |-  ( y  =  B  ->  ( A  e.  y  <->  A  e.  B ) )
31, 2sbcie2g 3008 1  |-  ( B  e.  V  ->  ( [. B  /  x ]. A  e.  x  <->  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2158   [.wsbc 2974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-v 2751  df-sbc 2975
This theorem is referenced by:  sbcel21v  3039  csbvarg  3097
  Copyright terms: Public domain W3C validator