ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcel21v GIF version

Theorem sbcel21v 3093
Description: Class substitution into a membership relation. One direction of sbcel2gv 3092 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcel21v ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem sbcel21v
StepHypRef Expression
1 sbcex 3037 . 2 ([𝐵 / 𝑥]𝐴𝑥𝐵 ∈ V)
2 sbcel2gv 3092 . . 3 (𝐵 ∈ V → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
32biimpd 144 . 2 (𝐵 ∈ V → ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵))
41, 3mpcom 36 1 ([𝐵 / 𝑥]𝐴𝑥𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Vcvv 2799  [wsbc 3028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-sbc 3029
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator