Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbco2vlem | Unicode version |
Description: This is a version of sbco2 1958 where is distinct from and from . It is a lemma on the way to proving sbco2v 1941 which only requires that and be distinct. (Contributed by Jim Kingdon, 25-Dec-2017.) Remove one disjoint variable condition. (Revised by Jim Kingdon, 3-Feb-2018.) |
Ref | Expression |
---|---|
sbco2vlem.1 |
Ref | Expression |
---|---|
sbco2vlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbco2vlem.1 | . . 3 | |
2 | 1 | hbsbv 1934 | . 2 |
3 | sbequ 1833 | . 2 | |
4 | 2, 3 | sbieh 1783 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1346 wsb 1755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: sbco2vh 1938 |
Copyright terms: Public domain | W3C validator |