Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsbxyt | Unicode version |
Description: Closed form of nfsbxy 1940. (Contributed by Jim Kingdon, 9-May-2018.) |
Ref | Expression |
---|---|
nfsbxyt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-bndl 1507 | . 2 | |
2 | nfs1v 1937 | . . . . 5 | |
3 | drsb1 1797 | . . . . . 6 | |
4 | 3 | drnf2 1732 | . . . . 5 |
5 | 2, 4 | mpbii 148 | . . . 4 |
6 | 5 | a1d 22 | . . 3 |
7 | a16nf 1864 | . . . . 5 | |
8 | 7 | a1d 22 | . . . 4 |
9 | df-nf 1459 | . . . . . 6 | |
10 | 9 | albii 1468 | . . . . 5 |
11 | sb5 1885 | . . . . . . 7 | |
12 | nfa1 1539 | . . . . . . . . 9 | |
13 | nfa1 1539 | . . . . . . . . 9 | |
14 | 12, 13 | nfan 1563 | . . . . . . . 8 |
15 | sp 1509 | . . . . . . . . . 10 | |
16 | 15 | adantr 276 | . . . . . . . . 9 |
17 | sp 1509 | . . . . . . . . . 10 | |
18 | 17 | adantl 277 | . . . . . . . . 9 |
19 | 16, 18 | nfand 1566 | . . . . . . . 8 |
20 | 14, 19 | nfexd 1759 | . . . . . . 7 |
21 | 11, 20 | nfxfrd 1473 | . . . . . 6 |
22 | 21 | ex 115 | . . . . 5 |
23 | 10, 22 | sylbir 135 | . . . 4 |
24 | 8, 23 | jaoi 716 | . . 3 |
25 | 6, 24 | jaoi 716 | . 2 |
26 | 1, 25 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wo 708 wal 1351 wnf 1458 wex 1490 wsb 1760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 |
This theorem is referenced by: nfsbt 1974 |
Copyright terms: Public domain | W3C validator |