| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfsbxyt | Unicode version | ||
| Description: Closed form of nfsbxy 1961. (Contributed by Jim Kingdon, 9-May-2018.) |
| Ref | Expression |
|---|---|
| nfsbxyt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-bndl 1523 |
. 2
| |
| 2 | nfs1v 1958 |
. . . . 5
| |
| 3 | drsb1 1813 |
. . . . . 6
| |
| 4 | 3 | drnf2 1748 |
. . . . 5
|
| 5 | 2, 4 | mpbii 148 |
. . . 4
|
| 6 | 5 | a1d 22 |
. . 3
|
| 7 | a16nf 1880 |
. . . . 5
| |
| 8 | 7 | a1d 22 |
. . . 4
|
| 9 | df-nf 1475 |
. . . . . 6
| |
| 10 | 9 | albii 1484 |
. . . . 5
|
| 11 | sb5 1902 |
. . . . . . 7
| |
| 12 | nfa1 1555 |
. . . . . . . . 9
| |
| 13 | nfa1 1555 |
. . . . . . . . 9
| |
| 14 | 12, 13 | nfan 1579 |
. . . . . . . 8
|
| 15 | sp 1525 |
. . . . . . . . . 10
| |
| 16 | 15 | adantr 276 |
. . . . . . . . 9
|
| 17 | sp 1525 |
. . . . . . . . . 10
| |
| 18 | 17 | adantl 277 |
. . . . . . . . 9
|
| 19 | 16, 18 | nfand 1582 |
. . . . . . . 8
|
| 20 | 14, 19 | nfexd 1775 |
. . . . . . 7
|
| 21 | 11, 20 | nfxfrd 1489 |
. . . . . 6
|
| 22 | 21 | ex 115 |
. . . . 5
|
| 23 | 10, 22 | sylbir 135 |
. . . 4
|
| 24 | 8, 23 | jaoi 717 |
. . 3
|
| 25 | 6, 24 | jaoi 717 |
. 2
|
| 26 | 1, 25 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 |
| This theorem is referenced by: nfsbt 1995 |
| Copyright terms: Public domain | W3C validator |