ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2vh Unicode version

Theorem sbco2vh 1933
Description: This is a version of sbco2 1953 where  z is distinct from 
x. (Contributed by Jim Kingdon, 12-Feb-2018.)
Hypothesis
Ref Expression
sbco2vh.1  |-  ( ph  ->  A. z ph )
Assertion
Ref Expression
sbco2vh  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Distinct variable group:    x, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbco2vh
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sbco2vh.1 . . . 4  |-  ( ph  ->  A. z ph )
21sbco2vlem 1932 . . 3  |-  ( [ w  /  z ] [ z  /  x ] ph  <->  [ w  /  x ] ph )
32sbbii 1753 . 2  |-  ( [ y  /  w ] [ w  /  z ] [ z  /  x ] ph  <->  [ y  /  w ] [ w  /  x ] ph )
4 ax-17 1514 . . 3  |-  ( [ z  /  x ] ph  ->  A. w [ z  /  x ] ph )
54sbco2vlem 1932 . 2  |-  ( [ y  /  w ] [ w  /  z ] [ z  /  x ] ph  <->  [ y  /  z ] [ z  /  x ] ph )
6 ax-17 1514 . . 3  |-  ( ph  ->  A. w ph )
76sbco2vlem 1932 . 2  |-  ( [ y  /  w ] [ w  /  x ] ph  <->  [ y  /  x ] ph )
83, 5, 73bitr3i 209 1  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1341   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  nfsb  1934  equsb3  1939  sbn  1940  sbim  1941  sbor  1942  sban  1943  sbco2vd  1955  sbco3v  1957  sbcom2v2  1974  sbcom2  1975  dfsb7  1979  sb7f  1980  sbal  1988  sbal1  1990  sbex  1992
  Copyright terms: Public domain W3C validator