ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2vh Unicode version

Theorem sbco2vh 1938
Description: This is a version of sbco2 1958 where  z is distinct from 
x. (Contributed by Jim Kingdon, 12-Feb-2018.)
Hypothesis
Ref Expression
sbco2vh.1  |-  ( ph  ->  A. z ph )
Assertion
Ref Expression
sbco2vh  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Distinct variable group:    x, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbco2vh
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sbco2vh.1 . . . 4  |-  ( ph  ->  A. z ph )
21sbco2vlem 1937 . . 3  |-  ( [ w  /  z ] [ z  /  x ] ph  <->  [ w  /  x ] ph )
32sbbii 1758 . 2  |-  ( [ y  /  w ] [ w  /  z ] [ z  /  x ] ph  <->  [ y  /  w ] [ w  /  x ] ph )
4 ax-17 1519 . . 3  |-  ( [ z  /  x ] ph  ->  A. w [ z  /  x ] ph )
54sbco2vlem 1937 . 2  |-  ( [ y  /  w ] [ w  /  z ] [ z  /  x ] ph  <->  [ y  /  z ] [ z  /  x ] ph )
6 ax-17 1519 . . 3  |-  ( ph  ->  A. w ph )
76sbco2vlem 1937 . 2  |-  ( [ y  /  w ] [ w  /  x ] ph  <->  [ y  /  x ] ph )
83, 5, 73bitr3i 209 1  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1346   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by:  nfsb  1939  equsb3  1944  sbn  1945  sbim  1946  sbor  1947  sban  1948  sbco2vd  1960  sbco3v  1962  sbcom2v2  1979  sbcom2  1980  dfsb7  1984  sb7f  1985  sbal  1993  sbal1  1995  sbex  1997
  Copyright terms: Public domain W3C validator