| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbco2vh | Unicode version | ||
| Description: This is a version of sbco2 2016 where |
| Ref | Expression |
|---|---|
| sbco2vh.1 |
|
| Ref | Expression |
|---|---|
| sbco2vh |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbco2vh.1 |
. . . 4
| |
| 2 | 1 | sbco2vlem 1995 |
. . 3
|
| 3 | 2 | sbbii 1811 |
. 2
|
| 4 | ax-17 1572 |
. . 3
| |
| 5 | 4 | sbco2vlem 1995 |
. 2
|
| 6 | ax-17 1572 |
. . 3
| |
| 7 | 6 | sbco2vlem 1995 |
. 2
|
| 8 | 3, 5, 7 | 3bitr3i 210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 |
| This theorem is referenced by: nfsb 1997 equsb3 2002 sbn 2003 sbim 2004 sbor 2005 sban 2006 sbco2vd 2018 sbco3v 2020 sbcom2v2 2037 sbcom2 2038 dfsb7 2042 sb7f 2043 sbal 2051 sbal1 2053 sbex 2055 |
| Copyright terms: Public domain | W3C validator |