ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2vh Unicode version

Theorem sbco2vh 1964
Description: This is a version of sbco2 1984 where  z is distinct from 
x. (Contributed by Jim Kingdon, 12-Feb-2018.)
Hypothesis
Ref Expression
sbco2vh.1  |-  ( ph  ->  A. z ph )
Assertion
Ref Expression
sbco2vh  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Distinct variable group:    x, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbco2vh
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 sbco2vh.1 . . . 4  |-  ( ph  ->  A. z ph )
21sbco2vlem 1963 . . 3  |-  ( [ w  /  z ] [ z  /  x ] ph  <->  [ w  /  x ] ph )
32sbbii 1779 . 2  |-  ( [ y  /  w ] [ w  /  z ] [ z  /  x ] ph  <->  [ y  /  w ] [ w  /  x ] ph )
4 ax-17 1540 . . 3  |-  ( [ z  /  x ] ph  ->  A. w [ z  /  x ] ph )
54sbco2vlem 1963 . 2  |-  ( [ y  /  w ] [ w  /  z ] [ z  /  x ] ph  <->  [ y  /  z ] [ z  /  x ] ph )
6 ax-17 1540 . . 3  |-  ( ph  ->  A. w ph )
76sbco2vlem 1963 . 2  |-  ( [ y  /  w ] [ w  /  x ] ph  <->  [ y  /  x ] ph )
83, 5, 73bitr3i 210 1  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362   [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  nfsb  1965  equsb3  1970  sbn  1971  sbim  1972  sbor  1973  sban  1974  sbco2vd  1986  sbco3v  1988  sbcom2v2  2005  sbcom2  2006  dfsb7  2010  sb7f  2011  sbal  2019  sbal1  2021  sbex  2023
  Copyright terms: Public domain W3C validator