ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2 Unicode version

Theorem sbco2 1965
Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
sbco2.1  |-  F/ z
ph
Assertion
Ref Expression
sbco2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )

Proof of Theorem sbco2
StepHypRef Expression
1 sbco2.1 . . 3  |-  F/ z
ph
21nfri 1519 . 2  |-  ( ph  ->  A. z ph )
32sbco2h 1964 1  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   F/wnf 1460   [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763
This theorem is referenced by:  nfsbt  1976  sb7af  1993  sbco4lem  2006  sbco4  2007  eqsb1  2281  clelsb1  2282  clelsb2  2283  sb8ab  2299  clelsb1f  2323  sbralie  2723  sbcco  2986
  Copyright terms: Public domain W3C validator