ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2 Unicode version

Theorem sbco2 1984
Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
sbco2.1  |-  F/ z
ph
Assertion
Ref Expression
sbco2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )

Proof of Theorem sbco2
StepHypRef Expression
1 sbco2.1 . . 3  |-  F/ z
ph
21nfri 1533 . 2  |-  ( ph  ->  A. z ph )
32sbco2h 1983 1  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   F/wnf 1474   [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  nfsbt  1995  sb7af  2012  sbco4lem  2025  sbco4  2026  eqsb1  2300  clelsb1  2301  clelsb2  2302  sb8ab  2318  clelsb1f  2343  sbralie  2747  sbcco  3011
  Copyright terms: Public domain W3C validator