ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco2 Unicode version

Theorem sbco2 1981
Description: A composition law for substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
Hypothesis
Ref Expression
sbco2.1  |-  F/ z
ph
Assertion
Ref Expression
sbco2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )

Proof of Theorem sbco2
StepHypRef Expression
1 sbco2.1 . . 3  |-  F/ z
ph
21nfri 1530 . 2  |-  ( ph  ->  A. z ph )
32sbco2h 1980 1  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   F/wnf 1471   [wsb 1773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774
This theorem is referenced by:  nfsbt  1992  sb7af  2009  sbco4lem  2022  sbco4  2023  eqsb1  2297  clelsb1  2298  clelsb2  2299  sb8ab  2315  clelsb1f  2340  sbralie  2744  sbcco  3007
  Copyright terms: Public domain W3C validator