ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco3xzyz Unicode version

Theorem sbco3xzyz 1966
Description: Version of sbco3 1967 with distinct variable constraints between  x and  z, and  y and  z. Lemma for proving sbco3 1967. (Contributed by Jim Kingdon, 22-Mar-2018.)
Assertion
Ref Expression
sbco3xzyz  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbco3xzyz
StepHypRef Expression
1 sbcomxyyz 1965 . 2  |-  ( [ z  /  y ] [ z  /  x ] ph  <->  [ z  /  x ] [ z  /  y ] ph )
2 sbcocom 1963 . 2  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ z  /  x ] ph )
3 sbcocom 1963 . 2  |-  ( [ z  /  x ] [ x  /  y ] ph  <->  [ z  /  x ] [ z  /  y ] ph )
41, 2, 33bitr4i 211 1  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756
This theorem is referenced by:  sbco3  1967
  Copyright terms: Public domain W3C validator