ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco3xzyz Unicode version

Theorem sbco3xzyz 1992
Description: Version of sbco3 1993 with distinct variable constraints between  x and  z, and  y and  z. Lemma for proving sbco3 1993. (Contributed by Jim Kingdon, 22-Mar-2018.)
Assertion
Ref Expression
sbco3xzyz  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbco3xzyz
StepHypRef Expression
1 sbcomxyyz 1991 . 2  |-  ( [ z  /  y ] [ z  /  x ] ph  <->  [ z  /  x ] [ z  /  y ] ph )
2 sbcocom 1989 . 2  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ z  /  x ] ph )
3 sbcocom 1989 . 2  |-  ( [ z  /  x ] [ x  /  y ] ph  <->  [ z  /  x ] [ z  /  y ] ph )
41, 2, 33bitr4i 212 1  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by:  sbco3  1993
  Copyright terms: Public domain W3C validator