ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco3xzyz Unicode version

Theorem sbco3xzyz 2002
Description: Version of sbco3 2003 with distinct variable constraints between  x and  z, and  y and  z. Lemma for proving sbco3 2003. (Contributed by Jim Kingdon, 22-Mar-2018.)
Assertion
Ref Expression
sbco3xzyz  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbco3xzyz
StepHypRef Expression
1 sbcomxyyz 2001 . 2  |-  ( [ z  /  y ] [ z  /  x ] ph  <->  [ z  /  x ] [ z  /  y ] ph )
2 sbcocom 1999 . 2  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ z  /  x ] ph )
3 sbcocom 1999 . 2  |-  ( [ z  /  x ] [ x  /  y ] ph  <->  [ z  /  x ] [ z  /  y ] ph )
41, 2, 33bitr4i 212 1  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787
This theorem is referenced by:  sbco3  2003
  Copyright terms: Public domain W3C validator