Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbco3xzyz | GIF version |
Description: Version of sbco3 1954 with distinct variable constraints between 𝑥 and 𝑧, and 𝑦 and 𝑧. Lemma for proving sbco3 1954. (Contributed by Jim Kingdon, 22-Mar-2018.) |
Ref | Expression |
---|---|
sbco3xzyz | ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcomxyyz 1952 | . 2 ⊢ ([𝑧 / 𝑦][𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑧 / 𝑦]𝜑) | |
2 | sbcocom 1950 | . 2 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑) | |
3 | sbcocom 1950 | . 2 ⊢ ([𝑧 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑧 / 𝑦]𝜑) | |
4 | 1, 2, 3 | 3bitr4i 211 | 1 ⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 [wsb 1742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 |
This theorem is referenced by: sbco3 1954 |
Copyright terms: Public domain | W3C validator |