ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco3xzyz GIF version

Theorem sbco3xzyz 2001
Description: Version of sbco3 2002 with distinct variable constraints between 𝑥 and 𝑧, and 𝑦 and 𝑧. Lemma for proving sbco3 2002. (Contributed by Jim Kingdon, 22-Mar-2018.)
Assertion
Ref Expression
sbco3xzyz ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbco3xzyz
StepHypRef Expression
1 sbcomxyyz 2000 . 2 ([𝑧 / 𝑦][𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑧 / 𝑦]𝜑)
2 sbcocom 1998 . 2 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑦][𝑧 / 𝑥]𝜑)
3 sbcocom 1998 . 2 ([𝑧 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑧 / 𝑥][𝑧 / 𝑦]𝜑)
41, 2, 33bitr4i 212 1 ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥][𝑥 / 𝑦]𝜑)
Colors of variables: wff set class
Syntax hints:  wb 105  [wsb 1785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786
This theorem is referenced by:  sbco3  2002
  Copyright terms: Public domain W3C validator