ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcomv Unicode version

Theorem sbcomv 1959
Description: Version of sbcom 1963 with a distinct variable constraint between  x and  z. (Contributed by Jim Kingdon, 28-Feb-2018.)
Assertion
Ref Expression
sbcomv  |-  ( [ y  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ y  /  z ] ph )
Distinct variable group:    x, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbcomv
StepHypRef Expression
1 sbco3v 1957 . 2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] [ x  /  z ] ph )
2 sbcocom 1958 . 2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  z ] [ y  /  x ] ph )
3 sbcocom 1958 . 2  |-  ( [ y  /  x ] [ x  /  z ] ph  <->  [ y  /  x ] [ y  /  z ] ph )
41, 2, 33bitr3i 209 1  |-  ( [ y  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ y  /  z ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator