ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbcomv Unicode version

Theorem sbcomv 2022
Description: Version of sbcom 2026 with a distinct variable constraint between  x and  z. (Contributed by Jim Kingdon, 28-Feb-2018.)
Assertion
Ref Expression
sbcomv  |-  ( [ y  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ y  /  z ] ph )
Distinct variable group:    x, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbcomv
StepHypRef Expression
1 sbco3v 2020 . 2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  x ] [ x  /  z ] ph )
2 sbcocom 2021 . 2  |-  ( [ y  /  z ] [ z  /  x ] ph  <->  [ y  /  z ] [ y  /  x ] ph )
3 sbcocom 2021 . 2  |-  ( [ y  /  x ] [ x  /  z ] ph  <->  [ y  /  x ] [ y  /  z ] ph )
41, 2, 33bitr3i 210 1  |-  ( [ y  /  z ] [ y  /  x ] ph  <->  [ y  /  x ] [ y  /  z ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator