ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco3v Unicode version

Theorem sbco3v 2020
Description: Version of sbco3 2025 with a distinct variable constraint between  x and  y. (Contributed by Jim Kingdon, 19-Feb-2018.)
Assertion
Ref Expression
sbco3v  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbco3v
StepHypRef Expression
1 nfs1v 1990 . . . 4  |-  F/ x [ y  /  x ] ph
21nfri 1565 . . 3  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
32sbco2vh 1996 . 2  |-  ( [ z  /  x ] [ x  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ y  /  x ] ph )
4 sbco 2019 . . 3  |-  ( [ x  /  y ] [ y  /  x ] ph  <->  [ x  /  y ] ph )
54sbbii 1811 . 2  |-  ( [ z  /  x ] [ x  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
63, 5bitr3i 186 1  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809
This theorem is referenced by:  sbcomv  2022
  Copyright terms: Public domain W3C validator