ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbco3v Unicode version

Theorem sbco3v 1957
Description: Version of sbco3 1962 with a distinct variable constraint between  x and  y. (Contributed by Jim Kingdon, 19-Feb-2018.)
Assertion
Ref Expression
sbco3v  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem sbco3v
StepHypRef Expression
1 nfs1v 1927 . . . 4  |-  F/ x [ y  /  x ] ph
21nfri 1507 . . 3  |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
32sbco2vh 1933 . 2  |-  ( [ z  /  x ] [ x  /  y ] [ y  /  x ] ph  <->  [ z  /  y ] [ y  /  x ] ph )
4 sbco 1956 . . 3  |-  ( [ x  /  y ] [ y  /  x ] ph  <->  [ x  /  y ] ph )
54sbbii 1753 . 2  |-  ( [ z  /  x ] [ x  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
63, 5bitr3i 185 1  |-  ( [ z  /  y ] [ y  /  x ] ph  <->  [ z  /  x ] [ x  /  y ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by:  sbcomv  1959
  Copyright terms: Public domain W3C validator