ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbeqalb Unicode version

Theorem sbeqalb 3007
Description: Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.)
Assertion
Ref Expression
sbeqalb  |-  ( A  e.  V  ->  (
( A. x (
ph 
<->  x  =  A )  /\  A. x (
ph 
<->  x  =  B ) )  ->  A  =  B ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hints:    ph( x)    V( x)

Proof of Theorem sbeqalb
StepHypRef Expression
1 bibi1 239 . . . . 5  |-  ( (
ph 
<->  x  =  A )  ->  ( ( ph  <->  x  =  B )  <->  ( x  =  A  <->  x  =  B
) ) )
21biimpa 294 . . . 4  |-  ( ( ( ph  <->  x  =  A )  /\  ( ph 
<->  x  =  B ) )  ->  ( x  =  A  <->  x  =  B
) )
32biimpd 143 . . 3  |-  ( ( ( ph  <->  x  =  A )  /\  ( ph 
<->  x  =  B ) )  ->  ( x  =  A  ->  x  =  B ) )
43alanimi 1447 . 2  |-  ( ( A. x ( ph  <->  x  =  A )  /\  A. x ( ph  <->  x  =  B ) )  ->  A. x ( x  =  A  ->  x  =  B ) )
5 sbceqal 3006 . 2  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  x  =  B )  ->  A  =  B ) )
64, 5syl5 32 1  |-  ( A  e.  V  ->  (
( A. x (
ph 
<->  x  =  A )  /\  A. x (
ph 
<->  x  =  B ) )  ->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341    = wceq 1343    e. wcel 2136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-sbc 2952
This theorem is referenced by:  iotaval  5164
  Copyright terms: Public domain W3C validator