| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotaval | Unicode version | ||
| Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| iotaval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiota2 5221 |
. 2
| |
| 2 | vex 2766 |
. . . . . . 7
| |
| 3 | sbeqalb 3046 |
. . . . . . . 8
| |
| 4 | equcomi 1718 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl6 33 |
. . . . . . 7
|
| 6 | 2, 5 | ax-mp 5 |
. . . . . 6
|
| 7 | 6 | ex 115 |
. . . . 5
|
| 8 | equequ2 1727 |
. . . . . . . . . 10
| |
| 9 | 8 | equcoms 1722 |
. . . . . . . . 9
|
| 10 | 9 | bibi2d 232 |
. . . . . . . 8
|
| 11 | 10 | biimpd 144 |
. . . . . . 7
|
| 12 | 11 | alimdv 1893 |
. . . . . 6
|
| 13 | 12 | com12 30 |
. . . . 5
|
| 14 | 7, 13 | impbid 129 |
. . . 4
|
| 15 | 14 | alrimiv 1888 |
. . 3
|
| 16 | uniabio 5230 |
. . 3
| |
| 17 | 15, 16 | syl 14 |
. 2
|
| 18 | 1, 17 | eqtrid 2241 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-sn 3629 df-pr 3630 df-uni 3841 df-iota 5220 |
| This theorem is referenced by: iotauni 5232 iota1 5234 euiotaex 5236 iota4 5239 iota5 5241 |
| Copyright terms: Public domain | W3C validator |