Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iotaval | Unicode version |
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotaval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 5161 | . 2 | |
2 | vex 2733 | . . . . . . 7 | |
3 | sbeqalb 3011 | . . . . . . . 8 | |
4 | equcomi 1697 | . . . . . . . 8 | |
5 | 3, 4 | syl6 33 | . . . . . . 7 |
6 | 2, 5 | ax-mp 5 | . . . . . 6 |
7 | 6 | ex 114 | . . . . 5 |
8 | equequ2 1706 | . . . . . . . . . 10 | |
9 | 8 | equcoms 1701 | . . . . . . . . 9 |
10 | 9 | bibi2d 231 | . . . . . . . 8 |
11 | 10 | biimpd 143 | . . . . . . 7 |
12 | 11 | alimdv 1872 | . . . . . 6 |
13 | 12 | com12 30 | . . . . 5 |
14 | 7, 13 | impbid 128 | . . . 4 |
15 | 14 | alrimiv 1867 | . . 3 |
16 | uniabio 5170 | . . 3 | |
17 | 15, 16 | syl 14 | . 2 |
18 | 1, 17 | eqtrid 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wceq 1348 wcel 2141 cab 2156 cvv 2730 cuni 3796 cio 5158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-sn 3589 df-pr 3590 df-uni 3797 df-iota 5160 |
This theorem is referenced by: iotauni 5172 iota1 5174 euiotaex 5176 iota4 5178 iota5 5180 |
Copyright terms: Public domain | W3C validator |