Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iotaval | Unicode version |
Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
Ref | Expression |
---|---|
iotaval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiota2 5154 | . 2 | |
2 | vex 2729 | . . . . . . 7 | |
3 | sbeqalb 3007 | . . . . . . . 8 | |
4 | equcomi 1692 | . . . . . . . 8 | |
5 | 3, 4 | syl6 33 | . . . . . . 7 |
6 | 2, 5 | ax-mp 5 | . . . . . 6 |
7 | 6 | ex 114 | . . . . 5 |
8 | equequ2 1701 | . . . . . . . . . 10 | |
9 | 8 | equcoms 1696 | . . . . . . . . 9 |
10 | 9 | bibi2d 231 | . . . . . . . 8 |
11 | 10 | biimpd 143 | . . . . . . 7 |
12 | 11 | alimdv 1867 | . . . . . 6 |
13 | 12 | com12 30 | . . . . 5 |
14 | 7, 13 | impbid 128 | . . . 4 |
15 | 14 | alrimiv 1862 | . . 3 |
16 | uniabio 5163 | . . 3 | |
17 | 15, 16 | syl 14 | . 2 |
18 | 1, 17 | syl5eq 2211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wceq 1343 wcel 2136 cab 2151 cvv 2726 cuni 3789 cio 5151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-sn 3582 df-pr 3583 df-uni 3790 df-iota 5153 |
This theorem is referenced by: iotauni 5165 iota1 5167 euiotaex 5169 iota4 5171 iota5 5173 |
Copyright terms: Public domain | W3C validator |