| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotaval | Unicode version | ||
| Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| iotaval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiota2 5278 |
. 2
| |
| 2 | vex 2802 |
. . . . . . 7
| |
| 3 | sbeqalb 3085 |
. . . . . . . 8
| |
| 4 | equcomi 1750 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl6 33 |
. . . . . . 7
|
| 6 | 2, 5 | ax-mp 5 |
. . . . . 6
|
| 7 | 6 | ex 115 |
. . . . 5
|
| 8 | equequ2 1759 |
. . . . . . . . . 10
| |
| 9 | 8 | equcoms 1754 |
. . . . . . . . 9
|
| 10 | 9 | bibi2d 232 |
. . . . . . . 8
|
| 11 | 10 | biimpd 144 |
. . . . . . 7
|
| 12 | 11 | alimdv 1925 |
. . . . . 6
|
| 13 | 12 | com12 30 |
. . . . 5
|
| 14 | 7, 13 | impbid 129 |
. . . 4
|
| 15 | 14 | alrimiv 1920 |
. . 3
|
| 16 | uniabio 5288 |
. . 3
| |
| 17 | 15, 16 | syl 14 |
. 2
|
| 18 | 1, 17 | eqtrid 2274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-sn 3672 df-pr 3673 df-uni 3888 df-iota 5277 |
| This theorem is referenced by: iotauni 5290 iota1 5292 euiotaex 5294 iota4 5297 iota5 5299 |
| Copyright terms: Public domain | W3C validator |