| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iotaval | Unicode version | ||
| Description: Theorem 8.19 in [Quine] p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.) |
| Ref | Expression |
|---|---|
| iotaval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfiota2 5230 |
. 2
| |
| 2 | vex 2774 |
. . . . . . 7
| |
| 3 | sbeqalb 3054 |
. . . . . . . 8
| |
| 4 | equcomi 1726 |
. . . . . . . 8
| |
| 5 | 3, 4 | syl6 33 |
. . . . . . 7
|
| 6 | 2, 5 | ax-mp 5 |
. . . . . 6
|
| 7 | 6 | ex 115 |
. . . . 5
|
| 8 | equequ2 1735 |
. . . . . . . . . 10
| |
| 9 | 8 | equcoms 1730 |
. . . . . . . . 9
|
| 10 | 9 | bibi2d 232 |
. . . . . . . 8
|
| 11 | 10 | biimpd 144 |
. . . . . . 7
|
| 12 | 11 | alimdv 1901 |
. . . . . 6
|
| 13 | 12 | com12 30 |
. . . . 5
|
| 14 | 7, 13 | impbid 129 |
. . . 4
|
| 15 | 14 | alrimiv 1896 |
. . 3
|
| 16 | uniabio 5239 |
. . 3
| |
| 17 | 15, 16 | syl 14 |
. 2
|
| 18 | 1, 17 | eqtrid 2249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-sn 3638 df-pr 3639 df-uni 3850 df-iota 5229 |
| This theorem is referenced by: iotauni 5241 iota1 5243 euiotaex 5245 iota4 5248 iota5 5250 |
| Copyright terms: Public domain | W3C validator |