ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbceqal Unicode version

Theorem sbceqal 2964
Description: A variation of extensionality for classes. (Contributed by Andrew Salmon, 28-Jun-2011.)
Assertion
Ref Expression
sbceqal  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  x  =  B )  ->  A  =  B ) )
Distinct variable groups:    x, B    x, A
Allowed substitution hint:    V( x)

Proof of Theorem sbceqal
StepHypRef Expression
1 spsbc 2920 . 2  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  x  =  B )  ->  [. A  /  x ]. ( x  =  A  ->  x  =  B ) ) )
2 sbcimg 2950 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( x  =  A  ->  x  =  B )  <->  ( [. A  /  x ]. x  =  A  ->  [. A  /  x ]. x  =  B ) ) )
3 eqid 2139 . . . . 5  |-  A  =  A
4 eqsbc3 2948 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  =  A  <->  A  =  A ) )
53, 4mpbiri 167 . . . 4  |-  ( A  e.  V  ->  [. A  /  x ]. x  =  A )
6 pm5.5 241 . . . 4  |-  ( [. A  /  x ]. x  =  A  ->  ( (
[. A  /  x ]. x  =  A  ->  [. A  /  x ]. x  =  B
)  <->  [. A  /  x ]. x  =  B
) )
75, 6syl 14 . . 3  |-  ( A  e.  V  ->  (
( [. A  /  x ]. x  =  A  ->  [. A  /  x ]. x  =  B
)  <->  [. A  /  x ]. x  =  B
) )
8 eqsbc3 2948 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. x  =  B  <->  A  =  B ) )
92, 7, 83bitrd 213 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( x  =  A  ->  x  =  B )  <->  A  =  B
) )
101, 9sylibd 148 1  |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  x  =  B )  ->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1329    = wceq 1331    e. wcel 1480   [.wsbc 2909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-sbc 2910
This theorem is referenced by:  sbeqalb  2965  snsssn  3688
  Copyright terms: Public domain W3C validator