ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ1 Unicode version

Theorem sbequ1 1790
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbequ1  |-  ( x  =  y  ->  ( ph  ->  [ y  /  x ] ph ) )

Proof of Theorem sbequ1
StepHypRef Expression
1 pm3.4 333 . . 3  |-  ( ( x  =  y  /\  ph )  ->  ( x  =  y  ->  ph )
)
2 19.8a 1612 . . 3  |-  ( ( x  =  y  /\  ph )  ->  E. x
( x  =  y  /\  ph ) )
3 df-sb 1785 . . 3  |-  ( [ y  /  x ] ph 
<->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
) )
41, 2, 3sylanbrc 417 . 2  |-  ( ( x  =  y  /\  ph )  ->  [ y  /  x ] ph )
54ex 115 1  |-  ( x  =  y  ->  ( ph  ->  [ y  /  x ] ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1514   [wsb 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-4 1532
This theorem depends on definitions:  df-bi 117  df-sb 1785
This theorem is referenced by:  sbequ12  1793  sbequi  1861  sb6rf  1875  mo2n  2081  bj-bdfindes  15818  bj-findes  15850
  Copyright terms: Public domain W3C validator