ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbequ1 Unicode version

Theorem sbequ1 1768
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
sbequ1  |-  ( x  =  y  ->  ( ph  ->  [ y  /  x ] ph ) )

Proof of Theorem sbequ1
StepHypRef Expression
1 pm3.4 333 . . 3  |-  ( ( x  =  y  /\  ph )  ->  ( x  =  y  ->  ph )
)
2 19.8a 1590 . . 3  |-  ( ( x  =  y  /\  ph )  ->  E. x
( x  =  y  /\  ph ) )
3 df-sb 1763 . . 3  |-  ( [ y  /  x ] ph 
<->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
) )
41, 2, 3sylanbrc 417 . 2  |-  ( ( x  =  y  /\  ph )  ->  [ y  /  x ] ph )
54ex 115 1  |-  ( x  =  y  ->  ( ph  ->  [ y  /  x ] ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   E.wex 1492   [wsb 1762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510
This theorem depends on definitions:  df-bi 117  df-sb 1763
This theorem is referenced by:  sbequ12  1771  sbequi  1839  sb6rf  1853  mo2n  2054  bj-bdfindes  14786  bj-findes  14818
  Copyright terms: Public domain W3C validator