Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbequ1 | Unicode version |
Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbequ1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.4 331 | . . 3 | |
2 | 19.8a 1578 | . . 3 | |
3 | df-sb 1751 | . . 3 | |
4 | 1, 2, 3 | sylanbrc 414 | . 2 |
5 | 4 | ex 114 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1480 wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: sbequ12 1759 sbequi 1827 sb6rf 1841 mo2n 2042 bj-bdfindes 13831 bj-findes 13863 |
Copyright terms: Public domain | W3C validator |