| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sbequ1 | Unicode version | ||
| Description: An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbequ1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.4 333 |
. . 3
| |
| 2 | 19.8a 1604 |
. . 3
| |
| 3 | df-sb 1777 |
. . 3
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
. 2
|
| 5 | 4 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 |
| This theorem is referenced by: sbequ12 1785 sbequi 1853 sb6rf 1867 mo2n 2073 bj-bdfindes 15679 bj-findes 15711 |
| Copyright terms: Public domain | W3C validator |