| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findes | Unicode version | ||
| Description: Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 16114 for explanations. From this version, it is easy to prove findes 4669. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-findes |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 |
. . . 4
| |
| 2 | nfv 1552 |
. . . 4
| |
| 3 | 1, 2 | nfim 1596 |
. . 3
|
| 4 | nfs1v 1968 |
. . . 4
| |
| 5 | nfsbc1v 3024 |
. . . 4
| |
| 6 | 4, 5 | nfim 1596 |
. . 3
|
| 7 | sbequ12 1795 |
. . . 4
| |
| 8 | suceq 4467 |
. . . . 5
| |
| 9 | 8 | sbceq1d 3010 |
. . . 4
|
| 10 | 7, 9 | imbi12d 234 |
. . 3
|
| 11 | 3, 6, 10 | cbvral 2738 |
. 2
|
| 12 | nfsbc1v 3024 |
. . 3
| |
| 13 | sbceq1a 3015 |
. . . 4
| |
| 14 | 13 | biimprd 158 |
. . 3
|
| 15 | sbequ1 1792 |
. . 3
| |
| 16 | sbceq1a 3015 |
. . . 4
| |
| 17 | 16 | biimprd 158 |
. . 3
|
| 18 | 12, 4, 5, 14, 15, 17 | bj-findis 16114 |
. 2
|
| 19 | 11, 18 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-nul 4186 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-bd0 15948 ax-bdim 15949 ax-bdan 15950 ax-bdor 15951 ax-bdn 15952 ax-bdal 15953 ax-bdex 15954 ax-bdeq 15955 ax-bdel 15956 ax-bdsb 15957 ax-bdsep 16019 ax-infvn 16076 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 df-bdc 15976 df-bj-ind 16062 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |