| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-findes | Unicode version | ||
| Description: Principle of induction, using explicit substitutions. Constructive proof (from CZF). See the comment of bj-findis 15709 for explanations. From this version, it is easy to prove findes 4640. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-findes |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1542 |
. . . 4
| |
| 2 | nfv 1542 |
. . . 4
| |
| 3 | 1, 2 | nfim 1586 |
. . 3
|
| 4 | nfs1v 1958 |
. . . 4
| |
| 5 | nfsbc1v 3008 |
. . . 4
| |
| 6 | 4, 5 | nfim 1586 |
. . 3
|
| 7 | sbequ12 1785 |
. . . 4
| |
| 8 | suceq 4438 |
. . . . 5
| |
| 9 | 8 | sbceq1d 2994 |
. . . 4
|
| 10 | 7, 9 | imbi12d 234 |
. . 3
|
| 11 | 3, 6, 10 | cbvral 2725 |
. 2
|
| 12 | nfsbc1v 3008 |
. . 3
| |
| 13 | sbceq1a 2999 |
. . . 4
| |
| 14 | 13 | biimprd 158 |
. . 3
|
| 15 | sbequ1 1782 |
. . 3
| |
| 16 | sbceq1a 2999 |
. . . 4
| |
| 17 | 16 | biimprd 158 |
. . 3
|
| 18 | 12, 4, 5, 14, 15, 17 | bj-findis 15709 |
. 2
|
| 19 | 11, 18 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-nul 4160 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-bd0 15543 ax-bdim 15544 ax-bdan 15545 ax-bdor 15546 ax-bdn 15547 ax-bdal 15548 ax-bdex 15549 ax-bdeq 15550 ax-bdel 15551 ax-bdsb 15552 ax-bdsep 15614 ax-infvn 15671 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 df-bdc 15571 df-bj-ind 15657 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |