| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-bdfindes | Unicode version | ||
| Description: Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 16310 for explanations. From this version, it is easy to prove the bounded version of findes 4695. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-bdfindes.bd |
|
| Ref | Expression |
|---|---|
| bj-bdfindes |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 |
. . . 4
| |
| 2 | nfv 1574 |
. . . 4
| |
| 3 | 1, 2 | nfim 1618 |
. . 3
|
| 4 | nfs1v 1990 |
. . . 4
| |
| 5 | nfsbc1v 3047 |
. . . 4
| |
| 6 | 4, 5 | nfim 1618 |
. . 3
|
| 7 | sbequ12 1817 |
. . . 4
| |
| 8 | suceq 4493 |
. . . . 5
| |
| 9 | 8 | sbceq1d 3033 |
. . . 4
|
| 10 | 7, 9 | imbi12d 234 |
. . 3
|
| 11 | 3, 6, 10 | cbvral 2761 |
. 2
|
| 12 | bj-bdfindes.bd |
. . 3
| |
| 13 | nfsbc1v 3047 |
. . 3
| |
| 14 | sbceq1a 3038 |
. . . 4
| |
| 15 | 14 | biimprd 158 |
. . 3
|
| 16 | sbequ1 1814 |
. . 3
| |
| 17 | sbceq1a 3038 |
. . . 4
| |
| 18 | 17 | biimprd 158 |
. . 3
|
| 19 | 12, 13, 4, 5, 15, 16, 18 | bj-bdfindis 16310 |
. 2
|
| 20 | 11, 19 | sylan2b 287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4210 ax-pr 4293 ax-un 4524 ax-bd0 16176 ax-bdor 16179 ax-bdex 16182 ax-bdeq 16183 ax-bdel 16184 ax-bdsb 16185 ax-bdsep 16247 ax-infvn 16304 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 df-bdc 16204 df-bj-ind 16290 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |