Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdfindes Unicode version

Theorem bj-bdfindes 13318
Description: Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 13316 for explanations. From this version, it is easy to prove the bounded version of findes 4525. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-bdfindes.bd  |- BOUNDED  ph
Assertion
Ref Expression
bj-bdfindes  |-  ( (
[. (/)  /  x ]. ph 
/\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
)  ->  A. x  e.  om  ph )

Proof of Theorem bj-bdfindes
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1509 . . . 4  |-  F/ y
ph
2 nfv 1509 . . . 4  |-  F/ y
[. suc  x  /  x ]. ph
31, 2nfim 1552 . . 3  |-  F/ y ( ph  ->  [. suc  x  /  x ]. ph )
4 nfs1v 1913 . . . 4  |-  F/ x [ y  /  x ] ph
5 nfsbc1v 2931 . . . 4  |-  F/ x [. suc  y  /  x ]. ph
64, 5nfim 1552 . . 3  |-  F/ x
( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
7 sbequ12 1745 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
8 suceq 4332 . . . . 5  |-  ( x  =  y  ->  suc  x  =  suc  y )
98sbceq1d 2918 . . . 4  |-  ( x  =  y  ->  ( [. suc  x  /  x ]. ph  <->  [. suc  y  /  x ]. ph ) )
107, 9imbi12d 233 . . 3  |-  ( x  =  y  ->  (
( ph  ->  [. suc  x  /  x ]. ph )  <->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
) )
113, 6, 10cbvral 2653 . 2  |-  ( A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )  <->  A. y  e.  om  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph ) )
12 bj-bdfindes.bd . . 3  |- BOUNDED  ph
13 nfsbc1v 2931 . . 3  |-  F/ x [. (/)  /  x ]. ph
14 sbceq1a 2922 . . . 4  |-  ( x  =  (/)  ->  ( ph  <->  [. (/)  /  x ]. ph )
)
1514biimprd 157 . . 3  |-  ( x  =  (/)  ->  ( [. (/)  /  x ]. ph  ->  ph ) )
16 sbequ1 1742 . . 3  |-  ( x  =  y  ->  ( ph  ->  [ y  /  x ] ph ) )
17 sbceq1a 2922 . . . 4  |-  ( x  =  suc  y  -> 
( ph  <->  [. suc  y  /  x ]. ph ) )
1817biimprd 157 . . 3  |-  ( x  =  suc  y  -> 
( [. suc  y  /  x ]. ph  ->  ph )
)
1912, 13, 4, 5, 15, 16, 18bj-bdfindis 13316 . 2  |-  ( (
[. (/)  /  x ]. ph 
/\  A. y  e.  om  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
)  ->  A. x  e.  om  ph )
2011, 19sylan2b 285 1  |-  ( (
[. (/)  /  x ]. ph 
/\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
)  ->  A. x  e.  om  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332   [wsb 1736   A.wral 2417   [.wsbc 2913   (/)c0 3368   suc csuc 4295   omcom 4512  BOUNDED wbd 13181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-nul 4062  ax-pr 4139  ax-un 4363  ax-bd0 13182  ax-bdor 13185  ax-bdex 13188  ax-bdeq 13189  ax-bdel 13190  ax-bdsb 13191  ax-bdsep 13253  ax-infvn 13310
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-sn 3538  df-pr 3539  df-uni 3745  df-int 3780  df-suc 4301  df-iom 4513  df-bdc 13210  df-bj-ind 13296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator