Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdfindes Unicode version

Theorem bj-bdfindes 12981
 Description: Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 12979 for explanations. From this version, it is easy to prove the bounded version of findes 4485. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-bdfindes.bd BOUNDED
Assertion
Ref Expression
bj-bdfindes

Proof of Theorem bj-bdfindes
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfv 1491 . . . 4
2 nfv 1491 . . . 4
31, 2nfim 1534 . . 3
4 nfs1v 1890 . . . 4
5 nfsbc1v 2898 . . . 4
64, 5nfim 1534 . . 3
7 sbequ12 1727 . . . 4
8 suceq 4292 . . . . 5
98sbceq1d 2885 . . . 4
107, 9imbi12d 233 . . 3
113, 6, 10cbvral 2625 . 2
12 bj-bdfindes.bd . . 3 BOUNDED
13 nfsbc1v 2898 . . 3
14 sbceq1a 2889 . . . 4
1514biimprd 157 . . 3
16 sbequ1 1724 . . 3
17 sbceq1a 2889 . . . 4
1817biimprd 157 . . 3
1912, 13, 4, 5, 15, 16, 18bj-bdfindis 12979 . 2
2011, 19sylan2b 283 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wceq 1314  wsb 1718  wral 2391  wsbc 2880  c0 3331   csuc 4255  com 4472  BOUNDED wbd 12844 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-nul 4022  ax-pr 4099  ax-un 4323  ax-bd0 12845  ax-bdor 12848  ax-bdex 12851  ax-bdeq 12852  ax-bdel 12853  ax-bdsb 12854  ax-bdsep 12916  ax-infvn 12973 This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-sn 3501  df-pr 3502  df-uni 3705  df-int 3740  df-suc 4261  df-iom 4473  df-bdc 12873  df-bj-ind 12959 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator