Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-bdfindes Unicode version

Theorem bj-bdfindes 15511
Description: Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 15509 for explanations. From this version, it is easy to prove the bounded version of findes 4636. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-bdfindes.bd  |- BOUNDED  ph
Assertion
Ref Expression
bj-bdfindes  |-  ( (
[. (/)  /  x ]. ph 
/\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
)  ->  A. x  e.  om  ph )

Proof of Theorem bj-bdfindes
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1539 . . . 4  |-  F/ y
ph
2 nfv 1539 . . . 4  |-  F/ y
[. suc  x  /  x ]. ph
31, 2nfim 1583 . . 3  |-  F/ y ( ph  ->  [. suc  x  /  x ]. ph )
4 nfs1v 1955 . . . 4  |-  F/ x [ y  /  x ] ph
5 nfsbc1v 3005 . . . 4  |-  F/ x [. suc  y  /  x ]. ph
64, 5nfim 1583 . . 3  |-  F/ x
( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
7 sbequ12 1782 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
8 suceq 4434 . . . . 5  |-  ( x  =  y  ->  suc  x  =  suc  y )
98sbceq1d 2991 . . . 4  |-  ( x  =  y  ->  ( [. suc  x  /  x ]. ph  <->  [. suc  y  /  x ]. ph ) )
107, 9imbi12d 234 . . 3  |-  ( x  =  y  ->  (
( ph  ->  [. suc  x  /  x ]. ph )  <->  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
) )
113, 6, 10cbvral 2722 . 2  |-  ( A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )  <->  A. y  e.  om  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph ) )
12 bj-bdfindes.bd . . 3  |- BOUNDED  ph
13 nfsbc1v 3005 . . 3  |-  F/ x [. (/)  /  x ]. ph
14 sbceq1a 2996 . . . 4  |-  ( x  =  (/)  ->  ( ph  <->  [. (/)  /  x ]. ph )
)
1514biimprd 158 . . 3  |-  ( x  =  (/)  ->  ( [. (/)  /  x ]. ph  ->  ph ) )
16 sbequ1 1779 . . 3  |-  ( x  =  y  ->  ( ph  ->  [ y  /  x ] ph ) )
17 sbceq1a 2996 . . . 4  |-  ( x  =  suc  y  -> 
( ph  <->  [. suc  y  /  x ]. ph ) )
1817biimprd 158 . . 3  |-  ( x  =  suc  y  -> 
( [. suc  y  /  x ]. ph  ->  ph )
)
1912, 13, 4, 5, 15, 16, 18bj-bdfindis 15509 . 2  |-  ( (
[. (/)  /  x ]. ph 
/\  A. y  e.  om  ( [ y  /  x ] ph  ->  [. suc  y  /  x ]. ph )
)  ->  A. x  e.  om  ph )
2011, 19sylan2b 287 1  |-  ( (
[. (/)  /  x ]. ph 
/\  A. x  e.  om  ( ph  ->  [. suc  x  /  x ]. ph )
)  ->  A. x  e.  om  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   [wsb 1773   A.wral 2472   [.wsbc 2986   (/)c0 3447   suc csuc 4397   omcom 4623  BOUNDED wbd 15374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-nul 4156  ax-pr 4239  ax-un 4465  ax-bd0 15375  ax-bdor 15378  ax-bdex 15381  ax-bdeq 15382  ax-bdel 15383  ax-bdsb 15384  ax-bdsep 15446  ax-infvn 15503
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-sn 3625  df-pr 3626  df-uni 3837  df-int 3872  df-suc 4403  df-iom 4624  df-bdc 15403  df-bj-ind 15489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator