ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isarep1 Unicode version

Theorem isarep1 5284
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by  ph ( x ,  y ) i.e. the class  ( {
<. x ,  y >.  |  ph } " A
). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
isarep1  |-  ( b  e.  ( { <. x ,  y >.  |  ph } " A )  <->  E. x  e.  A  [ b  /  y ] ph )
Distinct variable groups:    x, A    x, b, y
Allowed substitution hints:    ph( x, y, b)    A( y, b)

Proof of Theorem isarep1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vex 2733 . . 3  |-  b  e. 
_V
21elima 4958 . 2  |-  ( b  e.  ( { <. x ,  y >.  |  ph } " A )  <->  E. z  e.  A  z { <. x ,  y >.  |  ph } b )
3 df-br 3990 . . . 4  |-  ( z { <. x ,  y
>.  |  ph } b  <->  <. z ,  b >.  e.  { <. x ,  y
>.  |  ph } )
4 opelopabsb 4245 . . . 4  |-  ( <.
z ,  b >.  e.  { <. x ,  y
>.  |  ph }  <->  [. z  /  x ]. [. b  / 
y ]. ph )
5 sbsbc 2959 . . . . . 6  |-  ( [ b  /  y ]
ph 
<-> 
[. b  /  y ]. ph )
65sbbii 1758 . . . . 5  |-  ( [ z  /  x ] [ b  /  y ] ph  <->  [ z  /  x ] [. b  /  y ]. ph )
7 sbsbc 2959 . . . . 5  |-  ( [ z  /  x ] [. b  /  y ]. ph  <->  [. z  /  x ]. [. b  /  y ]. ph )
86, 7bitr2i 184 . . . 4  |-  ( [. z  /  x ]. [. b  /  y ]. ph  <->  [ z  /  x ] [ b  /  y ] ph )
93, 4, 83bitri 205 . . 3  |-  ( z { <. x ,  y
>.  |  ph } b  <->  [ z  /  x ] [ b  /  y ] ph )
109rexbii 2477 . 2  |-  ( E. z  e.  A  z { <. x ,  y
>.  |  ph } b  <->  E. z  e.  A  [ z  /  x ] [ b  /  y ] ph )
11 nfs1v 1932 . . 3  |-  F/ x [ z  /  x ] [ b  /  y ] ph
12 nfv 1521 . . 3  |-  F/ z [ b  /  y ] ph
13 sbequ12r 1765 . . 3  |-  ( z  =  x  ->  ( [ z  /  x ] [ b  /  y ] ph  <->  [ b  /  y ] ph ) )
1411, 12, 13cbvrex 2693 . 2  |-  ( E. z  e.  A  [
z  /  x ] [ b  /  y ] ph  <->  E. x  e.  A  [ b  /  y ] ph )
152, 10, 143bitri 205 1  |-  ( b  e.  ( { <. x ,  y >.  |  ph } " A )  <->  E. x  e.  A  [ b  /  y ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   [wsb 1755    e. wcel 2141   E.wrex 2449   [.wsbc 2955   <.cop 3586   class class class wbr 3989   {copab 4049   "cima 4614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator