ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isarep1 Unicode version

Theorem isarep1 5344
Description: Part of a study of the Axiom of Replacement used by the Isabelle prover. The object PrimReplace is apparently the image of the function encoded by  ph ( x ,  y ) i.e. the class  ( {
<. x ,  y >.  |  ph } " A
). If so, we can prove Isabelle's "Axiom of Replacement" conclusion without using the Axiom of Replacement, for which I (N. Megill) currently have no explanation. (Contributed by NM, 26-Oct-2006.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
isarep1  |-  ( b  e.  ( { <. x ,  y >.  |  ph } " A )  <->  E. x  e.  A  [ b  /  y ] ph )
Distinct variable groups:    x, A    x, b, y
Allowed substitution hints:    ph( x, y, b)    A( y, b)

Proof of Theorem isarep1
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . 3  |-  b  e. 
_V
21elima 5014 . 2  |-  ( b  e.  ( { <. x ,  y >.  |  ph } " A )  <->  E. z  e.  A  z { <. x ,  y >.  |  ph } b )
3 df-br 4034 . . . 4  |-  ( z { <. x ,  y
>.  |  ph } b  <->  <. z ,  b >.  e.  { <. x ,  y
>.  |  ph } )
4 opelopabsb 4294 . . . 4  |-  ( <.
z ,  b >.  e.  { <. x ,  y
>.  |  ph }  <->  [. z  /  x ]. [. b  / 
y ]. ph )
5 sbsbc 2993 . . . . . 6  |-  ( [ b  /  y ]
ph 
<-> 
[. b  /  y ]. ph )
65sbbii 1779 . . . . 5  |-  ( [ z  /  x ] [ b  /  y ] ph  <->  [ z  /  x ] [. b  /  y ]. ph )
7 sbsbc 2993 . . . . 5  |-  ( [ z  /  x ] [. b  /  y ]. ph  <->  [. z  /  x ]. [. b  /  y ]. ph )
86, 7bitr2i 185 . . . 4  |-  ( [. z  /  x ]. [. b  /  y ]. ph  <->  [ z  /  x ] [ b  /  y ] ph )
93, 4, 83bitri 206 . . 3  |-  ( z { <. x ,  y
>.  |  ph } b  <->  [ z  /  x ] [ b  /  y ] ph )
109rexbii 2504 . 2  |-  ( E. z  e.  A  z { <. x ,  y
>.  |  ph } b  <->  E. z  e.  A  [ z  /  x ] [ b  /  y ] ph )
11 nfs1v 1958 . . 3  |-  F/ x [ z  /  x ] [ b  /  y ] ph
12 nfv 1542 . . 3  |-  F/ z [ b  /  y ] ph
13 sbequ12r 1786 . . 3  |-  ( z  =  x  ->  ( [ z  /  x ] [ b  /  y ] ph  <->  [ b  /  y ] ph ) )
1411, 12, 13cbvrex 2726 . 2  |-  ( E. z  e.  A  [
z  /  x ] [ b  /  y ] ph  <->  E. x  e.  A  [ b  /  y ] ph )
152, 10, 143bitri 206 1  |-  ( b  e.  ( { <. x ,  y >.  |  ph } " A )  <->  E. x  e.  A  [ b  /  y ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 105   [wsb 1776    e. wcel 2167   E.wrex 2476   [.wsbc 2989   <.cop 3625   class class class wbr 4033   {copab 4093   "cima 4666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator