| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeliunxp | Unicode version | ||
| Description: Membership in a union of cross products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.) |
| Ref | Expression |
|---|---|
| opeliunxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. 2
| |
| 2 | opexg 4290 |
. 2
| |
| 3 | df-rex 2492 |
. . . . . 6
| |
| 4 | nfv 1552 |
. . . . . . 7
| |
| 5 | nfs1v 1968 |
. . . . . . . 8
| |
| 6 | nfcv 2350 |
. . . . . . . . . 10
| |
| 7 | nfcsb1v 3134 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | nfxp 4720 |
. . . . . . . . 9
|
| 9 | 8 | nfcri 2344 |
. . . . . . . 8
|
| 10 | 5, 9 | nfan 1589 |
. . . . . . 7
|
| 11 | sbequ12 1795 |
. . . . . . . 8
| |
| 12 | sneq 3654 |
. . . . . . . . . 10
| |
| 13 | csbeq1a 3110 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | xpeq12d 4718 |
. . . . . . . . 9
|
| 15 | 14 | eleq2d 2277 |
. . . . . . . 8
|
| 16 | 11, 15 | anbi12d 473 |
. . . . . . 7
|
| 17 | 4, 10, 16 | cbvex 1780 |
. . . . . 6
|
| 18 | 3, 17 | bitri 184 |
. . . . 5
|
| 19 | eleq1 2270 |
. . . . . . 7
| |
| 20 | 19 | anbi2d 464 |
. . . . . 6
|
| 21 | 20 | exbidv 1849 |
. . . . 5
|
| 22 | 18, 21 | bitrid 192 |
. . . 4
|
| 23 | df-iun 3943 |
. . . 4
| |
| 24 | 22, 23 | elab2g 2927 |
. . 3
|
| 25 | opelxp 4723 |
. . . . . . 7
| |
| 26 | 25 | anbi2i 457 |
. . . . . 6
|
| 27 | an12 561 |
. . . . . 6
| |
| 28 | velsn 3660 |
. . . . . . . 8
| |
| 29 | equcom 1730 |
. . . . . . . 8
| |
| 30 | 28, 29 | bitri 184 |
. . . . . . 7
|
| 31 | 30 | anbi1i 458 |
. . . . . 6
|
| 32 | 26, 27, 31 | 3bitri 206 |
. . . . 5
|
| 33 | 32 | exbii 1629 |
. . . 4
|
| 34 | vex 2779 |
. . . . 5
| |
| 35 | sbequ12r 1796 |
. . . . . 6
| |
| 36 | 13 | equcoms 1732 |
. . . . . . . 8
|
| 37 | 36 | eqcomd 2213 |
. . . . . . 7
|
| 38 | 37 | eleq2d 2277 |
. . . . . 6
|
| 39 | 35, 38 | anbi12d 473 |
. . . . 5
|
| 40 | 34, 39 | ceqsexv 2816 |
. . . 4
|
| 41 | 33, 40 | bitri 184 |
. . 3
|
| 42 | 24, 41 | bitrdi 196 |
. 2
|
| 43 | 1, 2, 42 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-iun 3943 df-opab 4122 df-xp 4699 |
| This theorem is referenced by: eliunxp 4835 opeliunxp2 4836 opeliunxp2f 6347 |
| Copyright terms: Public domain | W3C validator |