| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeliunxp | Unicode version | ||
| Description: Membership in a union of cross products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.) |
| Ref | Expression |
|---|---|
| opeliunxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 |
. 2
| |
| 2 | opexg 4271 |
. 2
| |
| 3 | df-rex 2489 |
. . . . . 6
| |
| 4 | nfv 1550 |
. . . . . . 7
| |
| 5 | nfs1v 1966 |
. . . . . . . 8
| |
| 6 | nfcv 2347 |
. . . . . . . . . 10
| |
| 7 | nfcsb1v 3125 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | nfxp 4701 |
. . . . . . . . 9
|
| 9 | 8 | nfcri 2341 |
. . . . . . . 8
|
| 10 | 5, 9 | nfan 1587 |
. . . . . . 7
|
| 11 | sbequ12 1793 |
. . . . . . . 8
| |
| 12 | sneq 3643 |
. . . . . . . . . 10
| |
| 13 | csbeq1a 3101 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | xpeq12d 4699 |
. . . . . . . . 9
|
| 15 | 14 | eleq2d 2274 |
. . . . . . . 8
|
| 16 | 11, 15 | anbi12d 473 |
. . . . . . 7
|
| 17 | 4, 10, 16 | cbvex 1778 |
. . . . . 6
|
| 18 | 3, 17 | bitri 184 |
. . . . 5
|
| 19 | eleq1 2267 |
. . . . . . 7
| |
| 20 | 19 | anbi2d 464 |
. . . . . 6
|
| 21 | 20 | exbidv 1847 |
. . . . 5
|
| 22 | 18, 21 | bitrid 192 |
. . . 4
|
| 23 | df-iun 3928 |
. . . 4
| |
| 24 | 22, 23 | elab2g 2919 |
. . 3
|
| 25 | opelxp 4704 |
. . . . . . 7
| |
| 26 | 25 | anbi2i 457 |
. . . . . 6
|
| 27 | an12 561 |
. . . . . 6
| |
| 28 | velsn 3649 |
. . . . . . . 8
| |
| 29 | equcom 1728 |
. . . . . . . 8
| |
| 30 | 28, 29 | bitri 184 |
. . . . . . 7
|
| 31 | 30 | anbi1i 458 |
. . . . . 6
|
| 32 | 26, 27, 31 | 3bitri 206 |
. . . . 5
|
| 33 | 32 | exbii 1627 |
. . . 4
|
| 34 | vex 2774 |
. . . . 5
| |
| 35 | sbequ12r 1794 |
. . . . . 6
| |
| 36 | 13 | equcoms 1730 |
. . . . . . . 8
|
| 37 | 36 | eqcomd 2210 |
. . . . . . 7
|
| 38 | 37 | eleq2d 2274 |
. . . . . 6
|
| 39 | 35, 38 | anbi12d 473 |
. . . . 5
|
| 40 | 34, 39 | ceqsexv 2810 |
. . . 4
|
| 41 | 33, 40 | bitri 184 |
. . 3
|
| 42 | 24, 41 | bitrdi 196 |
. 2
|
| 43 | 1, 2, 42 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-csb 3093 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-iun 3928 df-opab 4105 df-xp 4680 |
| This theorem is referenced by: eliunxp 4816 opeliunxp2 4817 opeliunxp2f 6323 |
| Copyright terms: Public domain | W3C validator |