| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opeliunxp | Unicode version | ||
| Description: Membership in a union of cross products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.) |
| Ref | Expression |
|---|---|
| opeliunxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. 2
| |
| 2 | opexg 4313 |
. 2
| |
| 3 | df-rex 2514 |
. . . . . 6
| |
| 4 | nfv 1574 |
. . . . . . 7
| |
| 5 | nfs1v 1990 |
. . . . . . . 8
| |
| 6 | nfcv 2372 |
. . . . . . . . . 10
| |
| 7 | nfcsb1v 3157 |
. . . . . . . . . 10
| |
| 8 | 6, 7 | nfxp 4745 |
. . . . . . . . 9
|
| 9 | 8 | nfcri 2366 |
. . . . . . . 8
|
| 10 | 5, 9 | nfan 1611 |
. . . . . . 7
|
| 11 | sbequ12 1817 |
. . . . . . . 8
| |
| 12 | sneq 3677 |
. . . . . . . . . 10
| |
| 13 | csbeq1a 3133 |
. . . . . . . . . 10
| |
| 14 | 12, 13 | xpeq12d 4743 |
. . . . . . . . 9
|
| 15 | 14 | eleq2d 2299 |
. . . . . . . 8
|
| 16 | 11, 15 | anbi12d 473 |
. . . . . . 7
|
| 17 | 4, 10, 16 | cbvex 1802 |
. . . . . 6
|
| 18 | 3, 17 | bitri 184 |
. . . . 5
|
| 19 | eleq1 2292 |
. . . . . . 7
| |
| 20 | 19 | anbi2d 464 |
. . . . . 6
|
| 21 | 20 | exbidv 1871 |
. . . . 5
|
| 22 | 18, 21 | bitrid 192 |
. . . 4
|
| 23 | df-iun 3966 |
. . . 4
| |
| 24 | 22, 23 | elab2g 2950 |
. . 3
|
| 25 | opelxp 4748 |
. . . . . . 7
| |
| 26 | 25 | anbi2i 457 |
. . . . . 6
|
| 27 | an12 561 |
. . . . . 6
| |
| 28 | velsn 3683 |
. . . . . . . 8
| |
| 29 | equcom 1752 |
. . . . . . . 8
| |
| 30 | 28, 29 | bitri 184 |
. . . . . . 7
|
| 31 | 30 | anbi1i 458 |
. . . . . 6
|
| 32 | 26, 27, 31 | 3bitri 206 |
. . . . 5
|
| 33 | 32 | exbii 1651 |
. . . 4
|
| 34 | vex 2802 |
. . . . 5
| |
| 35 | sbequ12r 1818 |
. . . . . 6
| |
| 36 | 13 | equcoms 1754 |
. . . . . . . 8
|
| 37 | 36 | eqcomd 2235 |
. . . . . . 7
|
| 38 | 37 | eleq2d 2299 |
. . . . . 6
|
| 39 | 35, 38 | anbi12d 473 |
. . . . 5
|
| 40 | 34, 39 | ceqsexv 2839 |
. . . 4
|
| 41 | 33, 40 | bitri 184 |
. . 3
|
| 42 | 24, 41 | bitrdi 196 |
. 2
|
| 43 | 1, 2, 42 | pm5.21nii 709 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-iun 3966 df-opab 4145 df-xp 4724 |
| This theorem is referenced by: eliunxp 4860 opeliunxp2 4861 opeliunxp2f 6382 |
| Copyright terms: Public domain | W3C validator |