Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeliunxp | Unicode version |
Description: Membership in a union of cross products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.) |
Ref | Expression |
---|---|
opeliunxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 | |
2 | opexg 4213 | . 2 | |
3 | df-rex 2454 | . . . . . 6 | |
4 | nfv 1521 | . . . . . . 7 | |
5 | nfs1v 1932 | . . . . . . . 8 | |
6 | nfcv 2312 | . . . . . . . . . 10 | |
7 | nfcsb1v 3082 | . . . . . . . . . 10 | |
8 | 6, 7 | nfxp 4638 | . . . . . . . . 9 |
9 | 8 | nfcri 2306 | . . . . . . . 8 |
10 | 5, 9 | nfan 1558 | . . . . . . 7 |
11 | sbequ12 1764 | . . . . . . . 8 | |
12 | sneq 3594 | . . . . . . . . . 10 | |
13 | csbeq1a 3058 | . . . . . . . . . 10 | |
14 | 12, 13 | xpeq12d 4636 | . . . . . . . . 9 |
15 | 14 | eleq2d 2240 | . . . . . . . 8 |
16 | 11, 15 | anbi12d 470 | . . . . . . 7 |
17 | 4, 10, 16 | cbvex 1749 | . . . . . 6 |
18 | 3, 17 | bitri 183 | . . . . 5 |
19 | eleq1 2233 | . . . . . . 7 | |
20 | 19 | anbi2d 461 | . . . . . 6 |
21 | 20 | exbidv 1818 | . . . . 5 |
22 | 18, 21 | syl5bb 191 | . . . 4 |
23 | df-iun 3875 | . . . 4 | |
24 | 22, 23 | elab2g 2877 | . . 3 |
25 | opelxp 4641 | . . . . . . 7 | |
26 | 25 | anbi2i 454 | . . . . . 6 |
27 | an12 556 | . . . . . 6 | |
28 | velsn 3600 | . . . . . . . 8 | |
29 | equcom 1699 | . . . . . . . 8 | |
30 | 28, 29 | bitri 183 | . . . . . . 7 |
31 | 30 | anbi1i 455 | . . . . . 6 |
32 | 26, 27, 31 | 3bitri 205 | . . . . 5 |
33 | 32 | exbii 1598 | . . . 4 |
34 | vex 2733 | . . . . 5 | |
35 | sbequ12r 1765 | . . . . . 6 | |
36 | 13 | equcoms 1701 | . . . . . . . 8 |
37 | 36 | eqcomd 2176 | . . . . . . 7 |
38 | 37 | eleq2d 2240 | . . . . . 6 |
39 | 35, 38 | anbi12d 470 | . . . . 5 |
40 | 34, 39 | ceqsexv 2769 | . . . 4 |
41 | 33, 40 | bitri 183 | . . 3 |
42 | 24, 41 | bitrdi 195 | . 2 |
43 | 1, 2, 42 | pm5.21nii 699 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wex 1485 wsb 1755 wcel 2141 wrex 2449 cvv 2730 csb 3049 csn 3583 cop 3586 ciun 3873 cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-iun 3875 df-opab 4051 df-xp 4617 |
This theorem is referenced by: eliunxp 4750 opeliunxp2 4751 opeliunxp2f 6217 |
Copyright terms: Public domain | W3C validator |