ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeliunxp Unicode version

Theorem opeliunxp 4718
Description: Membership in a union of cross products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
opeliunxp  |-  ( <.
x ,  C >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  C  e.  B ) )

Proof of Theorem opeliunxp
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2774 . 2  |-  ( <.
x ,  C >.  e. 
U_ x  e.  A  ( { x }  X.  B )  ->  <. x ,  C >.  e.  _V )
2 opexg 4261 . 2  |-  ( ( x  e.  A  /\  C  e.  B )  -> 
<. x ,  C >.  e. 
_V )
3 df-rex 2481 . . . . . 6  |-  ( E. x  e.  A  y  e.  ( { x }  X.  B )  <->  E. x
( x  e.  A  /\  y  e.  ( { x }  X.  B ) ) )
4 nfv 1542 . . . . . . 7  |-  F/ z ( x  e.  A  /\  y  e.  ( { x }  X.  B ) )
5 nfs1v 1958 . . . . . . . 8  |-  F/ x [ z  /  x ] x  e.  A
6 nfcv 2339 . . . . . . . . . 10  |-  F/_ x { z }
7 nfcsb1v 3117 . . . . . . . . . 10  |-  F/_ x [_ z  /  x ]_ B
86, 7nfxp 4690 . . . . . . . . 9  |-  F/_ x
( { z }  X.  [_ z  /  x ]_ B )
98nfcri 2333 . . . . . . . 8  |-  F/ x  y  e.  ( {
z }  X.  [_ z  /  x ]_ B
)
105, 9nfan 1579 . . . . . . 7  |-  F/ x
( [ z  /  x ] x  e.  A  /\  y  e.  ( { z }  X.  [_ z  /  x ]_ B ) )
11 sbequ12 1785 . . . . . . . 8  |-  ( x  =  z  ->  (
x  e.  A  <->  [ z  /  x ] x  e.  A ) )
12 sneq 3633 . . . . . . . . . 10  |-  ( x  =  z  ->  { x }  =  { z } )
13 csbeq1a 3093 . . . . . . . . . 10  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
1412, 13xpeq12d 4688 . . . . . . . . 9  |-  ( x  =  z  ->  ( { x }  X.  B )  =  ( { z }  X.  [_ z  /  x ]_ B ) )
1514eleq2d 2266 . . . . . . . 8  |-  ( x  =  z  ->  (
y  e.  ( { x }  X.  B
)  <->  y  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) )
1611, 15anbi12d 473 . . . . . . 7  |-  ( x  =  z  ->  (
( x  e.  A  /\  y  e.  ( { x }  X.  B ) )  <->  ( [
z  /  x ]
x  e.  A  /\  y  e.  ( {
z }  X.  [_ z  /  x ]_ B
) ) ) )
174, 10, 16cbvex 1770 . . . . . 6  |-  ( E. x ( x  e.  A  /\  y  e.  ( { x }  X.  B ) )  <->  E. z
( [ z  /  x ] x  e.  A  /\  y  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) )
183, 17bitri 184 . . . . 5  |-  ( E. x  e.  A  y  e.  ( { x }  X.  B )  <->  E. z
( [ z  /  x ] x  e.  A  /\  y  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) )
19 eleq1 2259 . . . . . . 7  |-  ( y  =  <. x ,  C >.  ->  ( y  e.  ( { z }  X.  [_ z  /  x ]_ B )  <->  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) )
2019anbi2d 464 . . . . . 6  |-  ( y  =  <. x ,  C >.  ->  ( ( [ z  /  x ]
x  e.  A  /\  y  e.  ( {
z }  X.  [_ z  /  x ]_ B
) )  <->  ( [
z  /  x ]
x  e.  A  /\  <.
x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) ) )
2120exbidv 1839 . . . . 5  |-  ( y  =  <. x ,  C >.  ->  ( E. z
( [ z  /  x ] x  e.  A  /\  y  e.  ( { z }  X.  [_ z  /  x ]_ B ) )  <->  E. z
( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) ) )
2218, 21bitrid 192 . . . 4  |-  ( y  =  <. x ,  C >.  ->  ( E. x  e.  A  y  e.  ( { x }  X.  B )  <->  E. z
( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) ) )
23 df-iun 3918 . . . 4  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  { y  |  E. x  e.  A  y  e.  ( { x }  X.  B ) }
2422, 23elab2g 2911 . . 3  |-  ( <.
x ,  C >.  e. 
_V  ->  ( <. x ,  C >.  e.  U_ x  e.  A  ( {
x }  X.  B
)  <->  E. z ( [ z  /  x ]
x  e.  A  /\  <.
x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) ) )
25 opelxp 4693 . . . . . . 7  |-  ( <.
x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B )  <->  ( x  e.  { z }  /\  C  e.  [_ z  /  x ]_ B ) )
2625anbi2i 457 . . . . . 6  |-  ( ( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) )  <->  ( [ z  /  x ] x  e.  A  /\  (
x  e.  { z }  /\  C  e. 
[_ z  /  x ]_ B ) ) )
27 an12 561 . . . . . 6  |-  ( ( [ z  /  x ] x  e.  A  /\  ( x  e.  {
z }  /\  C  e.  [_ z  /  x ]_ B ) )  <->  ( x  e.  { z }  /\  ( [ z  /  x ] x  e.  A  /\  C  e.  [_ z  /  x ]_ B ) ) )
28 velsn 3639 . . . . . . . 8  |-  ( x  e.  { z }  <-> 
x  =  z )
29 equcom 1720 . . . . . . . 8  |-  ( x  =  z  <->  z  =  x )
3028, 29bitri 184 . . . . . . 7  |-  ( x  e.  { z }  <-> 
z  =  x )
3130anbi1i 458 . . . . . 6  |-  ( ( x  e.  { z }  /\  ( [ z  /  x ]
x  e.  A  /\  C  e.  [_ z  /  x ]_ B ) )  <-> 
( z  =  x  /\  ( [ z  /  x ] x  e.  A  /\  C  e. 
[_ z  /  x ]_ B ) ) )
3226, 27, 313bitri 206 . . . . 5  |-  ( ( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) )  <->  ( z  =  x  /\  ( [ z  /  x ]
x  e.  A  /\  C  e.  [_ z  /  x ]_ B ) ) )
3332exbii 1619 . . . 4  |-  ( E. z ( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) )  <->  E. z
( z  =  x  /\  ( [ z  /  x ] x  e.  A  /\  C  e. 
[_ z  /  x ]_ B ) ) )
34 vex 2766 . . . . 5  |-  x  e. 
_V
35 sbequ12r 1786 . . . . . 6  |-  ( z  =  x  ->  ( [ z  /  x ] x  e.  A  <->  x  e.  A ) )
3613equcoms 1722 . . . . . . . 8  |-  ( z  =  x  ->  B  =  [_ z  /  x ]_ B )
3736eqcomd 2202 . . . . . . 7  |-  ( z  =  x  ->  [_ z  /  x ]_ B  =  B )
3837eleq2d 2266 . . . . . 6  |-  ( z  =  x  ->  ( C  e.  [_ z  /  x ]_ B  <->  C  e.  B ) )
3935, 38anbi12d 473 . . . . 5  |-  ( z  =  x  ->  (
( [ z  /  x ] x  e.  A  /\  C  e.  [_ z  /  x ]_ B )  <-> 
( x  e.  A  /\  C  e.  B
) ) )
4034, 39ceqsexv 2802 . . . 4  |-  ( E. z ( z  =  x  /\  ( [ z  /  x ]
x  e.  A  /\  C  e.  [_ z  /  x ]_ B ) )  <-> 
( x  e.  A  /\  C  e.  B
) )
4133, 40bitri 184 . . 3  |-  ( E. z ( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) )  <->  ( x  e.  A  /\  C  e.  B ) )
4224, 41bitrdi 196 . 2  |-  ( <.
x ,  C >.  e. 
_V  ->  ( <. x ,  C >.  e.  U_ x  e.  A  ( {
x }  X.  B
)  <->  ( x  e.  A  /\  C  e.  B ) ) )
431, 2, 42pm5.21nii 705 1  |-  ( <.
x ,  C >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  C  e.  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1506   [wsb 1776    e. wcel 2167   E.wrex 2476   _Vcvv 2763   [_csb 3084   {csn 3622   <.cop 3625   U_ciun 3916    X. cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-iun 3918  df-opab 4095  df-xp 4669
This theorem is referenced by:  eliunxp  4805  opeliunxp2  4806  opeliunxp2f  6296
  Copyright terms: Public domain W3C validator