Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opeliunxp | Unicode version |
Description: Membership in a union of cross products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.) |
Ref | Expression |
---|---|
opeliunxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 | |
2 | opexg 4206 | . 2 | |
3 | df-rex 2450 | . . . . . 6 | |
4 | nfv 1516 | . . . . . . 7 | |
5 | nfs1v 1927 | . . . . . . . 8 | |
6 | nfcv 2308 | . . . . . . . . . 10 | |
7 | nfcsb1v 3078 | . . . . . . . . . 10 | |
8 | 6, 7 | nfxp 4631 | . . . . . . . . 9 |
9 | 8 | nfcri 2302 | . . . . . . . 8 |
10 | 5, 9 | nfan 1553 | . . . . . . 7 |
11 | sbequ12 1759 | . . . . . . . 8 | |
12 | sneq 3587 | . . . . . . . . . 10 | |
13 | csbeq1a 3054 | . . . . . . . . . 10 | |
14 | 12, 13 | xpeq12d 4629 | . . . . . . . . 9 |
15 | 14 | eleq2d 2236 | . . . . . . . 8 |
16 | 11, 15 | anbi12d 465 | . . . . . . 7 |
17 | 4, 10, 16 | cbvex 1744 | . . . . . 6 |
18 | 3, 17 | bitri 183 | . . . . 5 |
19 | eleq1 2229 | . . . . . . 7 | |
20 | 19 | anbi2d 460 | . . . . . 6 |
21 | 20 | exbidv 1813 | . . . . 5 |
22 | 18, 21 | syl5bb 191 | . . . 4 |
23 | df-iun 3868 | . . . 4 | |
24 | 22, 23 | elab2g 2873 | . . 3 |
25 | opelxp 4634 | . . . . . . 7 | |
26 | 25 | anbi2i 453 | . . . . . 6 |
27 | an12 551 | . . . . . 6 | |
28 | velsn 3593 | . . . . . . . 8 | |
29 | equcom 1694 | . . . . . . . 8 | |
30 | 28, 29 | bitri 183 | . . . . . . 7 |
31 | 30 | anbi1i 454 | . . . . . 6 |
32 | 26, 27, 31 | 3bitri 205 | . . . . 5 |
33 | 32 | exbii 1593 | . . . 4 |
34 | vex 2729 | . . . . 5 | |
35 | sbequ12r 1760 | . . . . . 6 | |
36 | 13 | equcoms 1696 | . . . . . . . 8 |
37 | 36 | eqcomd 2171 | . . . . . . 7 |
38 | 37 | eleq2d 2236 | . . . . . 6 |
39 | 35, 38 | anbi12d 465 | . . . . 5 |
40 | 34, 39 | ceqsexv 2765 | . . . 4 |
41 | 33, 40 | bitri 183 | . . 3 |
42 | 24, 41 | bitrdi 195 | . 2 |
43 | 1, 2, 42 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wex 1480 wsb 1750 wcel 2136 wrex 2445 cvv 2726 csb 3045 csn 3576 cop 3579 ciun 3866 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-iun 3868 df-opab 4044 df-xp 4610 |
This theorem is referenced by: eliunxp 4743 opeliunxp2 4744 opeliunxp2f 6206 |
Copyright terms: Public domain | W3C validator |