ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opeliunxp Unicode version

Theorem opeliunxp 4714
Description: Membership in a union of cross products. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 1-Jan-2017.)
Assertion
Ref Expression
opeliunxp  |-  ( <.
x ,  C >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  C  e.  B ) )

Proof of Theorem opeliunxp
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2771 . 2  |-  ( <.
x ,  C >.  e. 
U_ x  e.  A  ( { x }  X.  B )  ->  <. x ,  C >.  e.  _V )
2 opexg 4257 . 2  |-  ( ( x  e.  A  /\  C  e.  B )  -> 
<. x ,  C >.  e. 
_V )
3 df-rex 2478 . . . . . 6  |-  ( E. x  e.  A  y  e.  ( { x }  X.  B )  <->  E. x
( x  e.  A  /\  y  e.  ( { x }  X.  B ) ) )
4 nfv 1539 . . . . . . 7  |-  F/ z ( x  e.  A  /\  y  e.  ( { x }  X.  B ) )
5 nfs1v 1955 . . . . . . . 8  |-  F/ x [ z  /  x ] x  e.  A
6 nfcv 2336 . . . . . . . . . 10  |-  F/_ x { z }
7 nfcsb1v 3113 . . . . . . . . . 10  |-  F/_ x [_ z  /  x ]_ B
86, 7nfxp 4686 . . . . . . . . 9  |-  F/_ x
( { z }  X.  [_ z  /  x ]_ B )
98nfcri 2330 . . . . . . . 8  |-  F/ x  y  e.  ( {
z }  X.  [_ z  /  x ]_ B
)
105, 9nfan 1576 . . . . . . 7  |-  F/ x
( [ z  /  x ] x  e.  A  /\  y  e.  ( { z }  X.  [_ z  /  x ]_ B ) )
11 sbequ12 1782 . . . . . . . 8  |-  ( x  =  z  ->  (
x  e.  A  <->  [ z  /  x ] x  e.  A ) )
12 sneq 3629 . . . . . . . . . 10  |-  ( x  =  z  ->  { x }  =  { z } )
13 csbeq1a 3089 . . . . . . . . . 10  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
1412, 13xpeq12d 4684 . . . . . . . . 9  |-  ( x  =  z  ->  ( { x }  X.  B )  =  ( { z }  X.  [_ z  /  x ]_ B ) )
1514eleq2d 2263 . . . . . . . 8  |-  ( x  =  z  ->  (
y  e.  ( { x }  X.  B
)  <->  y  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) )
1611, 15anbi12d 473 . . . . . . 7  |-  ( x  =  z  ->  (
( x  e.  A  /\  y  e.  ( { x }  X.  B ) )  <->  ( [
z  /  x ]
x  e.  A  /\  y  e.  ( {
z }  X.  [_ z  /  x ]_ B
) ) ) )
174, 10, 16cbvex 1767 . . . . . 6  |-  ( E. x ( x  e.  A  /\  y  e.  ( { x }  X.  B ) )  <->  E. z
( [ z  /  x ] x  e.  A  /\  y  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) )
183, 17bitri 184 . . . . 5  |-  ( E. x  e.  A  y  e.  ( { x }  X.  B )  <->  E. z
( [ z  /  x ] x  e.  A  /\  y  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) )
19 eleq1 2256 . . . . . . 7  |-  ( y  =  <. x ,  C >.  ->  ( y  e.  ( { z }  X.  [_ z  /  x ]_ B )  <->  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) )
2019anbi2d 464 . . . . . 6  |-  ( y  =  <. x ,  C >.  ->  ( ( [ z  /  x ]
x  e.  A  /\  y  e.  ( {
z }  X.  [_ z  /  x ]_ B
) )  <->  ( [
z  /  x ]
x  e.  A  /\  <.
x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) ) )
2120exbidv 1836 . . . . 5  |-  ( y  =  <. x ,  C >.  ->  ( E. z
( [ z  /  x ] x  e.  A  /\  y  e.  ( { z }  X.  [_ z  /  x ]_ B ) )  <->  E. z
( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) ) )
2218, 21bitrid 192 . . . 4  |-  ( y  =  <. x ,  C >.  ->  ( E. x  e.  A  y  e.  ( { x }  X.  B )  <->  E. z
( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) ) )
23 df-iun 3914 . . . 4  |-  U_ x  e.  A  ( {
x }  X.  B
)  =  { y  |  E. x  e.  A  y  e.  ( { x }  X.  B ) }
2422, 23elab2g 2907 . . 3  |-  ( <.
x ,  C >.  e. 
_V  ->  ( <. x ,  C >.  e.  U_ x  e.  A  ( {
x }  X.  B
)  <->  E. z ( [ z  /  x ]
x  e.  A  /\  <.
x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) ) ) )
25 opelxp 4689 . . . . . . 7  |-  ( <.
x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B )  <->  ( x  e.  { z }  /\  C  e.  [_ z  /  x ]_ B ) )
2625anbi2i 457 . . . . . 6  |-  ( ( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) )  <->  ( [ z  /  x ] x  e.  A  /\  (
x  e.  { z }  /\  C  e. 
[_ z  /  x ]_ B ) ) )
27 an12 561 . . . . . 6  |-  ( ( [ z  /  x ] x  e.  A  /\  ( x  e.  {
z }  /\  C  e.  [_ z  /  x ]_ B ) )  <->  ( x  e.  { z }  /\  ( [ z  /  x ] x  e.  A  /\  C  e.  [_ z  /  x ]_ B ) ) )
28 velsn 3635 . . . . . . . 8  |-  ( x  e.  { z }  <-> 
x  =  z )
29 equcom 1717 . . . . . . . 8  |-  ( x  =  z  <->  z  =  x )
3028, 29bitri 184 . . . . . . 7  |-  ( x  e.  { z }  <-> 
z  =  x )
3130anbi1i 458 . . . . . 6  |-  ( ( x  e.  { z }  /\  ( [ z  /  x ]
x  e.  A  /\  C  e.  [_ z  /  x ]_ B ) )  <-> 
( z  =  x  /\  ( [ z  /  x ] x  e.  A  /\  C  e. 
[_ z  /  x ]_ B ) ) )
3226, 27, 313bitri 206 . . . . 5  |-  ( ( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) )  <->  ( z  =  x  /\  ( [ z  /  x ]
x  e.  A  /\  C  e.  [_ z  /  x ]_ B ) ) )
3332exbii 1616 . . . 4  |-  ( E. z ( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) )  <->  E. z
( z  =  x  /\  ( [ z  /  x ] x  e.  A  /\  C  e. 
[_ z  /  x ]_ B ) ) )
34 vex 2763 . . . . 5  |-  x  e. 
_V
35 sbequ12r 1783 . . . . . 6  |-  ( z  =  x  ->  ( [ z  /  x ] x  e.  A  <->  x  e.  A ) )
3613equcoms 1719 . . . . . . . 8  |-  ( z  =  x  ->  B  =  [_ z  /  x ]_ B )
3736eqcomd 2199 . . . . . . 7  |-  ( z  =  x  ->  [_ z  /  x ]_ B  =  B )
3837eleq2d 2263 . . . . . 6  |-  ( z  =  x  ->  ( C  e.  [_ z  /  x ]_ B  <->  C  e.  B ) )
3935, 38anbi12d 473 . . . . 5  |-  ( z  =  x  ->  (
( [ z  /  x ] x  e.  A  /\  C  e.  [_ z  /  x ]_ B )  <-> 
( x  e.  A  /\  C  e.  B
) ) )
4034, 39ceqsexv 2799 . . . 4  |-  ( E. z ( z  =  x  /\  ( [ z  /  x ]
x  e.  A  /\  C  e.  [_ z  /  x ]_ B ) )  <-> 
( x  e.  A  /\  C  e.  B
) )
4133, 40bitri 184 . . 3  |-  ( E. z ( [ z  /  x ] x  e.  A  /\  <. x ,  C >.  e.  ( { z }  X.  [_ z  /  x ]_ B ) )  <->  ( x  e.  A  /\  C  e.  B ) )
4224, 41bitrdi 196 . 2  |-  ( <.
x ,  C >.  e. 
_V  ->  ( <. x ,  C >.  e.  U_ x  e.  A  ( {
x }  X.  B
)  <->  ( x  e.  A  /\  C  e.  B ) ) )
431, 2, 42pm5.21nii 705 1  |-  ( <.
x ,  C >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  C  e.  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E.wex 1503   [wsb 1773    e. wcel 2164   E.wrex 2473   _Vcvv 2760   [_csb 3080   {csn 3618   <.cop 3621   U_ciun 3912    X. cxp 4657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-iun 3914  df-opab 4091  df-xp 4665
This theorem is referenced by:  eliunxp  4801  opeliunxp2  4802  opeliunxp2f  6291
  Copyright terms: Public domain W3C validator