| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > findes | Unicode version | ||
| Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.) |
| Ref | Expression |
|---|---|
| findes.1 |
|
| findes.2 |
|
| Ref | Expression |
|---|---|
| findes |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3008 |
. 2
| |
| 2 | sbequ 1864 |
. 2
| |
| 3 | dfsbcq2 3008 |
. 2
| |
| 4 | sbequ12r 1796 |
. 2
| |
| 5 | findes.1 |
. 2
| |
| 6 | nfv 1552 |
. . . 4
| |
| 7 | nfs1v 1968 |
. . . . 5
| |
| 8 | nfsbc1v 3024 |
. . . . 5
| |
| 9 | 7, 8 | nfim 1596 |
. . . 4
|
| 10 | 6, 9 | nfim 1596 |
. . 3
|
| 11 | eleq1 2270 |
. . . 4
| |
| 12 | sbequ12 1795 |
. . . . 5
| |
| 13 | suceq 4467 |
. . . . . 6
| |
| 14 | dfsbcq 3007 |
. . . . . 6
| |
| 15 | 13, 14 | syl 14 |
. . . . 5
|
| 16 | 12, 15 | imbi12d 234 |
. . . 4
|
| 17 | 11, 16 | imbi12d 234 |
. . 3
|
| 18 | findes.2 |
. . 3
| |
| 19 | 10, 17, 18 | chvar 1781 |
. 2
|
| 20 | 1, 2, 3, 4, 5, 19 | finds 4666 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |