| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > findes | Unicode version | ||
| Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.) |
| Ref | Expression |
|---|---|
| findes.1 |
|
| findes.2 |
|
| Ref | Expression |
|---|---|
| findes |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3031 |
. 2
| |
| 2 | sbequ 1886 |
. 2
| |
| 3 | dfsbcq2 3031 |
. 2
| |
| 4 | sbequ12r 1818 |
. 2
| |
| 5 | findes.1 |
. 2
| |
| 6 | nfv 1574 |
. . . 4
| |
| 7 | nfs1v 1990 |
. . . . 5
| |
| 8 | nfsbc1v 3047 |
. . . . 5
| |
| 9 | 7, 8 | nfim 1618 |
. . . 4
|
| 10 | 6, 9 | nfim 1618 |
. . 3
|
| 11 | eleq1 2292 |
. . . 4
| |
| 12 | sbequ12 1817 |
. . . . 5
| |
| 13 | suceq 4493 |
. . . . . 6
| |
| 14 | dfsbcq 3030 |
. . . . . 6
| |
| 15 | 13, 14 | syl 14 |
. . . . 5
|
| 16 | 12, 15 | imbi12d 234 |
. . . 4
|
| 17 | 11, 16 | imbi12d 234 |
. . 3
|
| 18 | findes.2 |
. . 3
| |
| 19 | 10, 17, 18 | chvar 1803 |
. 2
|
| 20 | 1, 2, 3, 4, 5, 19 | finds 4692 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |