| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > findes | Unicode version | ||
| Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.) |
| Ref | Expression |
|---|---|
| findes.1 |
|
| findes.2 |
|
| Ref | Expression |
|---|---|
| findes |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 2992 |
. 2
| |
| 2 | sbequ 1854 |
. 2
| |
| 3 | dfsbcq2 2992 |
. 2
| |
| 4 | sbequ12r 1786 |
. 2
| |
| 5 | findes.1 |
. 2
| |
| 6 | nfv 1542 |
. . . 4
| |
| 7 | nfs1v 1958 |
. . . . 5
| |
| 8 | nfsbc1v 3008 |
. . . . 5
| |
| 9 | 7, 8 | nfim 1586 |
. . . 4
|
| 10 | 6, 9 | nfim 1586 |
. . 3
|
| 11 | eleq1 2259 |
. . . 4
| |
| 12 | sbequ12 1785 |
. . . . 5
| |
| 13 | suceq 4438 |
. . . . . 6
| |
| 14 | dfsbcq 2991 |
. . . . . 6
| |
| 15 | 13, 14 | syl 14 |
. . . . 5
|
| 16 | 12, 15 | imbi12d 234 |
. . . 4
|
| 17 | 11, 16 | imbi12d 234 |
. . 3
|
| 18 | findes.2 |
. . 3
| |
| 19 | 10, 17, 18 | chvar 1771 |
. 2
|
| 20 | 1, 2, 3, 4, 5, 19 | finds 4637 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-int 3876 df-suc 4407 df-iom 4628 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |