| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > findes | Unicode version | ||
| Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.) | 
| Ref | Expression | 
|---|---|
| findes.1 | 
 | 
| findes.2 | 
 | 
| Ref | Expression | 
|---|---|
| findes | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsbcq2 2992 | 
. 2
 | |
| 2 | sbequ 1854 | 
. 2
 | |
| 3 | dfsbcq2 2992 | 
. 2
 | |
| 4 | sbequ12r 1786 | 
. 2
 | |
| 5 | findes.1 | 
. 2
 | |
| 6 | nfv 1542 | 
. . . 4
 | |
| 7 | nfs1v 1958 | 
. . . . 5
 | |
| 8 | nfsbc1v 3008 | 
. . . . 5
 | |
| 9 | 7, 8 | nfim 1586 | 
. . . 4
 | 
| 10 | 6, 9 | nfim 1586 | 
. . 3
 | 
| 11 | eleq1 2259 | 
. . . 4
 | |
| 12 | sbequ12 1785 | 
. . . . 5
 | |
| 13 | suceq 4437 | 
. . . . . 6
 | |
| 14 | dfsbcq 2991 | 
. . . . . 6
 | |
| 15 | 13, 14 | syl 14 | 
. . . . 5
 | 
| 16 | 12, 15 | imbi12d 234 | 
. . . 4
 | 
| 17 | 11, 16 | imbi12d 234 | 
. . 3
 | 
| 18 | findes.2 | 
. . 3
 | |
| 19 | 10, 17, 18 | chvar 1771 | 
. 2
 | 
| 20 | 1, 2, 3, 4, 5, 19 | finds 4636 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-int 3875 df-suc 4406 df-iom 4627 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |