| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > findes | Unicode version | ||
| Description: Finite induction with explicit substitution. The first hypothesis is the basis and the second is the induction step. Theorem Schema 22 of [Suppes] p. 136. This is an alternative for Metamath 100 proof #74. (Contributed by Raph Levien, 9-Jul-2003.) |
| Ref | Expression |
|---|---|
| findes.1 |
|
| findes.2 |
|
| Ref | Expression |
|---|---|
| findes |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq2 3001 |
. 2
| |
| 2 | sbequ 1863 |
. 2
| |
| 3 | dfsbcq2 3001 |
. 2
| |
| 4 | sbequ12r 1795 |
. 2
| |
| 5 | findes.1 |
. 2
| |
| 6 | nfv 1551 |
. . . 4
| |
| 7 | nfs1v 1967 |
. . . . 5
| |
| 8 | nfsbc1v 3017 |
. . . . 5
| |
| 9 | 7, 8 | nfim 1595 |
. . . 4
|
| 10 | 6, 9 | nfim 1595 |
. . 3
|
| 11 | eleq1 2268 |
. . . 4
| |
| 12 | sbequ12 1794 |
. . . . 5
| |
| 13 | suceq 4449 |
. . . . . 6
| |
| 14 | dfsbcq 3000 |
. . . . . 6
| |
| 15 | 13, 14 | syl 14 |
. . . . 5
|
| 16 | 12, 15 | imbi12d 234 |
. . . 4
|
| 17 | 11, 16 | imbi12d 234 |
. . 3
|
| 18 | findes.2 |
. . 3
| |
| 19 | 10, 17, 18 | chvar 1780 |
. 2
|
| 20 | 1, 2, 3, 4, 5, 19 | finds 4648 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4418 df-iom 4639 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |