Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sborv | Unicode version |
Description: Version of sbor 1942 where and are distinct. (Contributed by Jim Kingdon, 3-Feb-2018.) |
Ref | Expression |
---|---|
sborv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb5 1875 | . . 3 | |
2 | andi 808 | . . . 4 | |
3 | 2 | exbii 1593 | . . 3 |
4 | 19.43 1616 | . . 3 | |
5 | 1, 3, 4 | 3bitri 205 | . 2 |
6 | sb5 1875 | . . 3 | |
7 | sb5 1875 | . . 3 | |
8 | 6, 7 | orbi12i 754 | . 2 |
9 | 5, 8 | bitr4i 186 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wo 698 wex 1480 wsb 1750 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-sb 1751 |
This theorem is referenced by: sbor 1942 |
Copyright terms: Public domain | W3C validator |