ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbi1v GIF version

Theorem sbi1v 1884
Description: Forward direction of sbimv 1886. (Contributed by Jim Kingdon, 25-Dec-2017.)
Assertion
Ref Expression
sbi1v ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sbi1v
StepHypRef Expression
1 sb6 1879 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
2 sb6 1879 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)))
3 ax-2 7 . . . . 5 ((𝑥 = 𝑦 → (𝜑𝜓)) → ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜓)))
43al2imi 1451 . . . 4 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜓)))
5 sb2 1760 . . . 4 (∀𝑥(𝑥 = 𝑦𝜓) → [𝑦 / 𝑥]𝜓)
64, 5syl6 33 . . 3 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜓))
72, 6sylbi 120 . 2 ([𝑦 / 𝑥](𝜑𝜓) → (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜓))
81, 7syl5bi 151 1 ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1346  [wsb 1755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-sb 1756
This theorem is referenced by:  sbimv  1886
  Copyright terms: Public domain W3C validator