Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbi1v GIF version

Theorem sbi1v 1864
 Description: Forward direction of sbimv 1866. (Contributed by Jim Kingdon, 25-Dec-2017.)
Assertion
Ref Expression
sbi1v ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem sbi1v
StepHypRef Expression
1 sb6 1859 . 2 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
2 sb6 1859 . . 3 ([𝑦 / 𝑥](𝜑𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)))
3 ax-2 7 . . . . 5 ((𝑥 = 𝑦 → (𝜑𝜓)) → ((𝑥 = 𝑦𝜑) → (𝑥 = 𝑦𝜓)))
43al2imi 1435 . . . 4 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → (∀𝑥(𝑥 = 𝑦𝜑) → ∀𝑥(𝑥 = 𝑦𝜓)))
5 sb2 1741 . . . 4 (∀𝑥(𝑥 = 𝑦𝜓) → [𝑦 / 𝑥]𝜓)
64, 5syl6 33 . . 3 (∀𝑥(𝑥 = 𝑦 → (𝜑𝜓)) → (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜓))
72, 6sylbi 120 . 2 ([𝑦 / 𝑥](𝜑𝜓) → (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜓))
81, 7syl5bi 151 1 ([𝑦 / 𝑥](𝜑𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4  ∀wal 1330  [wsb 1736 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1424  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-11 1485  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515 This theorem depends on definitions:  df-bi 116  df-sb 1737 This theorem is referenced by:  sbimv  1866
 Copyright terms: Public domain W3C validator