Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sbi1v | GIF version |
Description: Forward direction of sbimv 1891. (Contributed by Jim Kingdon, 25-Dec-2017.) |
Ref | Expression |
---|---|
sbi1v | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb6 1884 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
2 | sb6 1884 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) | |
3 | ax-2 7 | . . . . 5 ⊢ ((𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜓))) | |
4 | 3 | al2imi 1456 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
5 | sb2 1765 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) → [𝑦 / 𝑥]𝜓) | |
6 | 4, 5 | syl6 33 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜓)) |
7 | 2, 6 | sylbi 121 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜓)) |
8 | 1, 7 | biimtrid 152 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 [wsb 1760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 |
This theorem depends on definitions: df-bi 117 df-sb 1761 |
This theorem is referenced by: sbimv 1891 |
Copyright terms: Public domain | W3C validator |