ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbid2h GIF version

Theorem sbid2h 1873
Description: An identity law for substitution. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
sbid2h.1 (𝜑 → ∀𝑥𝜑)
Assertion
Ref Expression
sbid2h ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)

Proof of Theorem sbid2h
StepHypRef Expression
1 sbid2h.1 . . 3 (𝜑 → ∀𝑥𝜑)
21sbcof2 1834 . 2 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑)
31sbh 1800 . 2 ([𝑦 / 𝑥]𝜑𝜑)
42, 3bitri 184 1 ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371  [wsb 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558
This theorem depends on definitions:  df-bi 117  df-sb 1787
This theorem is referenced by:  sbid2  1874  sb5rf  1876  sb6rf  1877  sbid2v  2025
  Copyright terms: Public domain W3C validator