![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbid2h | GIF version |
Description: An identity law for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbid2h.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
sbid2h | ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid2h.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | sbcof2 1810 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
3 | 1 | sbh 1776 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
4 | 2, 3 | bitri 184 | 1 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 [wsb 1762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-sb 1763 |
This theorem is referenced by: sbid2 1850 sb5rf 1852 sb6rf 1853 sbid2v 1996 |
Copyright terms: Public domain | W3C validator |