![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbid2h | GIF version |
Description: An identity law for substitution. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sbid2h.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
sbid2h | ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbid2h.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | 1 | sbcof2 1821 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
3 | 1 | sbh 1787 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
4 | 2, 3 | bitri 184 | 1 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1362 [wsb 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-sb 1774 |
This theorem is referenced by: sbid2 1861 sb5rf 1863 sb6rf 1864 sbid2v 2012 |
Copyright terms: Public domain | W3C validator |