ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sblbis GIF version

Theorem sblbis 1947
Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.)
Hypothesis
Ref Expression
sblbis.1 ([𝑦 / 𝑥]𝜑𝜓)
Assertion
Ref Expression
sblbis ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))

Proof of Theorem sblbis
StepHypRef Expression
1 sbbi 1946 . 2 ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑))
2 sblbis.1 . . 3 ([𝑦 / 𝑥]𝜑𝜓)
32bibi2i 226 . 2 (([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))
41, 3bitri 183 1 ([𝑦 / 𝑥](𝜒𝜑) ↔ ([𝑦 / 𝑥]𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wb 104  [wsb 1749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522
This theorem depends on definitions:  df-bi 116  df-nf 1448  df-sb 1750
This theorem is referenced by:  sb8eu  2026  sb8euh  2036  sb8iota  5155
  Copyright terms: Public domain W3C validator