| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sblbis | GIF version | ||
| Description: Introduce left biconditional inside of a substitution. (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| sblbis.1 | ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| sblbis | ⊢ ([𝑦 / 𝑥](𝜒 ↔ 𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbbi 1990 | . 2 ⊢ ([𝑦 / 𝑥](𝜒 ↔ 𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑)) | |
| 2 | sblbis.1 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | |
| 3 | 2 | bibi2i 227 | . 2 ⊢ (([𝑦 / 𝑥]𝜒 ↔ [𝑦 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ 𝜓)) |
| 4 | 1, 3 | bitri 184 | 1 ⊢ ([𝑦 / 𝑥](𝜒 ↔ 𝜑) ↔ ([𝑦 / 𝑥]𝜒 ↔ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 [wsb 1788 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 |
| This theorem is referenced by: sb8eu 2070 sb8euh 2080 sb8iota 5262 |
| Copyright terms: Public domain | W3C validator |