ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb8eu Unicode version

Theorem sb8eu 2010
Description: Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
sb8eu.1  |-  F/ y
ph
Assertion
Ref Expression
sb8eu  |-  ( E! x ph  <->  E! y [ y  /  x ] ph )

Proof of Theorem sb8eu
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1508 . . . . 5  |-  F/ w
( ph  <->  x  =  z
)
21sb8 1828 . . . 4  |-  ( A. x ( ph  <->  x  =  z )  <->  A. w [ w  /  x ] ( ph  <->  x  =  z ) )
3 sbbi 1930 . . . . . 6  |-  ( [ w  /  x ]
( ph  <->  x  =  z
)  <->  ( [ w  /  x ] ph  <->  [ w  /  x ] x  =  z ) )
4 sb8eu.1 . . . . . . . 8  |-  F/ y
ph
54nfsb 1917 . . . . . . 7  |-  F/ y [ w  /  x ] ph
6 equsb3 1922 . . . . . . . 8  |-  ( [ w  /  x ]
x  =  z  <->  w  =  z )
7 nfv 1508 . . . . . . . 8  |-  F/ y  w  =  z
86, 7nfxfr 1450 . . . . . . 7  |-  F/ y [ w  /  x ] x  =  z
95, 8nfbi 1568 . . . . . 6  |-  F/ y ( [ w  /  x ] ph  <->  [ w  /  x ] x  =  z )
103, 9nfxfr 1450 . . . . 5  |-  F/ y [ w  /  x ] ( ph  <->  x  =  z )
11 nfv 1508 . . . . 5  |-  F/ w [ y  /  x ] ( ph  <->  x  =  z )
12 sbequ 1812 . . . . 5  |-  ( w  =  y  ->  ( [ w  /  x ] ( ph  <->  x  =  z )  <->  [ y  /  x ] ( ph  <->  x  =  z ) ) )
1310, 11, 12cbval 1727 . . . 4  |-  ( A. w [ w  /  x ] ( ph  <->  x  =  z )  <->  A. y [ y  /  x ] ( ph  <->  x  =  z ) )
14 equsb3 1922 . . . . . 6  |-  ( [ y  /  x ]
x  =  z  <->  y  =  z )
1514sblbis 1931 . . . . 5  |-  ( [ y  /  x ]
( ph  <->  x  =  z
)  <->  ( [ y  /  x ] ph  <->  y  =  z ) )
1615albii 1446 . . . 4  |-  ( A. y [ y  /  x ] ( ph  <->  x  =  z )  <->  A. y
( [ y  /  x ] ph  <->  y  =  z ) )
172, 13, 163bitri 205 . . 3  |-  ( A. x ( ph  <->  x  =  z )  <->  A. y
( [ y  /  x ] ph  <->  y  =  z ) )
1817exbii 1584 . 2  |-  ( E. z A. x (
ph 
<->  x  =  z )  <->  E. z A. y ( [ y  /  x ] ph  <->  y  =  z ) )
19 df-eu 2000 . 2  |-  ( E! x ph  <->  E. z A. x ( ph  <->  x  =  z ) )
20 df-eu 2000 . 2  |-  ( E! y [ y  /  x ] ph  <->  E. z A. y ( [ y  /  x ] ph  <->  y  =  z ) )
2118, 19, 203bitr4i 211 1  |-  ( E! x ph  <->  E! y [ y  /  x ] ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 104   A.wal 1329   F/wnf 1436   E.wex 1468   [wsb 1735   E!weu 1997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000
This theorem is referenced by:  sb8mo  2011  nfeud  2013  nfeu  2016  cbveu  2021  cbvreu  2650  acexmid  5766
  Copyright terms: Public domain W3C validator