Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > setindf | Unicode version |
Description: Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.) |
Ref | Expression |
---|---|
setindf.nf |
Ref | Expression |
---|---|
setindf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setindft 14275 | . 2 | |
2 | setindf.nf | . 2 | |
3 | 1, 2 | mpg 1449 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1351 wnf 1458 wsb 1760 wral 2453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-setind 4530 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-cleq 2168 df-clel 2171 df-ral 2458 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |