Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  setindf Unicode version

Theorem setindf 16040
Description: Axiom of set-induction with a disjoint variable condition replaced with a nonfreeness hypothesis. (Contributed by BJ, 22-Nov-2019.)
Hypothesis
Ref Expression
setindf.nf  |-  F/ y
ph
Assertion
Ref Expression
setindf  |-  ( A. x ( A. y  e.  x  [ y  /  x ] ph  ->  ph )  ->  A. x ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem setindf
StepHypRef Expression
1 setindft 16039 . 2  |-  ( A. x F/ y ph  ->  ( A. x ( A. y  e.  x  [
y  /  x ] ph  ->  ph )  ->  A. x ph ) )
2 setindf.nf . 2  |-  F/ y
ph
31, 2mpg 1475 1  |-  ( A. x ( A. y  e.  x  [ y  /  x ] ph  ->  ph )  ->  A. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   F/wnf 1484   [wsb 1786   A.wral 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-cleq 2199  df-clel 2202  df-ral 2490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator